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The current social and economic context increasingly demands open data to improve scientific re-
search and decision making. However, when published data refer to individual respondents, disclo-
sure risk limitation techniques must be implemented to anonymize the data and guarantee by design 
the fundamental right to privacy of the subjects the data refer to. Disclosure risk limitation has a long 
record in the statistical and computer science research communities, who have developed a variety 
of privacy-preserving solutions for data releases. This Synthesis Lecture provides a comprehensive 
overview of the fundamentals of privacy in data releases focusing on the computer science perspec-
tive. Specifically, we detail the privacy models, anonymization methods, and utility and risk metrics 
that have been proposed so far in the literature. Besides, as a more advanced topic, we identify and 
discuss in detail connections between several privacy models (i.e., how to accumulate the privacy 
guarantees they offer to achieve more robust protection and when such guarantees are equivalent 
or complementary); we also explore the links between anonymization methods and privacy models 
(how anonymization methods can be used to enforce privacy models and thereby offer ex ante pri-
vacy guarantees). These latter topics are relevant to researchers and advanced practitioners, who will 
gain a deeper understanding on the available data anonymization solutions and the privacy guaran-
tees they can offer.
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ABSTRACT
e current social and economic context increasingly demands open data to improve scientific
research and decision making. However, when published data refer to individual respondents,
disclosure risk limitation techniques must be implemented to anonymize the data and guaran-
tee by design the fundamental right to privacy of the subjects the data refer to. Disclosure risk
limitation has a long record in the statistical and computer science research communities, who
have developed a variety of privacy-preserving solutions for data releases. is Synthesis Lec-
ture provides a comprehensive overview of the fundamentals of privacy in data releases focusing
on the computer science perspective. Specifically, we detail the privacy models, anonymization
methods, and utility and risk metrics that have been proposed so far in the literature. Besides,
as a more advanced topic, we identify and discuss in detail connections between several privacy
models (i.e., how to accumulate the privacy guarantees they offer to achieve more robust pro-
tection and when such guarantees are equivalent or complementary); we also explore the links
between anonymization methods and privacy models (how anonymization methods can be used
to enforce privacy models and thereby offer ex ante privacy guarantees). ese latter topics are
relevant to researchers and advanced practitioners, who will gain a deeper understanding on the
available data anonymization solutions and the privacy guarantees they can offer.

KEYWORDS
data releases, privacy protection, anonymization, privacymodels, statistical disclosure
limitation, statistical disclosure control, microaggregation
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Preface
If jet airplanes ushered in the first dramatic reduction of our world’s perceived size, the next
shrinking came in the mid 1990s, when the Internet became widespread and the Information
Age started to become a reality. We now live in a global village and some (often quite powerful)
voices proclaim that maintaining one’s privacy is as hopeless as it used to be in conventional small
villages. Should this be true, the ingenuity of humans would have created their own nightmare.

Whereas security is essential for organizations to survive, individuals and sometimes even
companies need also some privacy to develop comfortably and lead a free life. is is the reason
individual privacy is mentioned in the Universal Declaration of Human Rights (1948) and data
privacy is protected by law inmostWestern countries. Indeed, without privacy, other fundamental
rights, like freedom of speech and democracy, are impaired.e outstanding challenge is to create
technology that implements those legal guarantees in a way compatible with functionality and
security.

is book is devoted to privacy preservation in data releases. Indeed, in our era of big data,
harnessing the enormous wealth of information available is essential to increasing the progress and
well-being of humankind. e challenge is how to release data that are useful for administrations
and companies to make accurate decisions without disclosing sensitive information on specific
identifiable individuals.

is conflict between utility and privacy has motivated research by several communities
since the 1970s, both in official statistics and computer science. Specifically, computer scientists
contributed the important notion of the privacy model in the late 1990s, with k-anonymity being
the first practical privacy model. e idea of a privacy model is to state ex ante privacy guarantees
that can be attained for a particular data set using one (or several) anonymization methods.

In addition to k-anonymity, we survey here its extensions l-diversity and t-closeness, as
well as the alternative paradigm of differential privacy. Further, we draw on our recent research to
report connections and synergies between all these privacy models: in fact, the k-anonymity-like
models and differential privacy turn out to be more related than previously thought.We also show
how microaggregation, a well-known family of anonymization methods that we have developed
to a large extent since the late 1990s, can be used to create anonymization methods that satisfy
most of the surveyed privacy models while improving the utility of the resulting protected data.
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We sincerely hope that the reader, whether academic or practitioner, will benefit from this
piece of work. On our side, we have enjoyed writing it and also conducting the original research
described in some of the chapters.

Josep Domingo-Ferrer, David Sánchez, and Jordi Soria-Comas
January 2016
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1

C H A P T E R 1

Introduction
e current social and economic context increasingly demands open data to improve planning,
scientific research, market analysis, etc. In particular, the public sector is pushed to release as
much information as possible for the sake of transparency. Organizations releasing data include
national statistical institutes (whose core mission is to publish statistical information), healthcare
authorities (which occasionally release epidemiologic information) or even private organizations
(which sometimes publish consumer surveys). When published data refer to individual respon-
dents, care must be exerted for the privacy of the latter not to be violated. It should be de facto
impossible to relate the published data to specific individuals. Indeed, supplying data to national
statistical institutes is compulsory in most countries but, in return, these institutes commit to pre-
serving the privacy of the respondents. Hence, rather than publishing accurate information for
each individual, the aim should be to provide useful statistical information, that is, to preserve as
much as possible in the released data the statistical properties of the original data.

Disclosure risk limitation has a long tradition in official statistics, where privacy-preserving
databases on individuals are called statistical databases. Inference control in statistical databases,
also known as StatisticalDisclosure Control (SDC), StatisticalDisclosure Limitation (SDL), database
anonymization, or database sanitization, is a discipline that seeks to protect data so that they can
be published without revealing confidential information that can be linked to specific individuals
among those to whom the data correspond.

Disclosure limitation has also been a topic of interest in the computer science research com-
munity, which refers to it as Privacy Preserving Data Publishing (PPDP) and Privacy Preserving
Data Mining (PPDM). e latter focuses on protecting the privacy of the results of data mining
tasks, whereas the former focuses on the publication of data of individuals.

Whereas both SDC and PPDP pursue the same objective, SDC proposes protectionmech-
anisms that are more concerned with the utility of the data and offer only vague (i.e., ex post)
privacy guarantees, whereas PPDP seeks to attain an ex ante privacy guarantee (by adhering to a
privacy model), but offers no utility guarantees.

In this book we provide an exhaustive overview of the fundamentals of privacy in data re-
leases, including privacy models, anonymization/SDC methods, and utility and risk metrics that
have been proposed so far in the literature. Moreover, as a more advanced topic, we discuss in
detail the connections between several proposed privacy models (how to accumulate the guar-
antees offered by different privacy models to achieve more robust protection and when are such
guarantees equivalent or complementary). We also propose bridges between SDC methods and
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privacy models (i.e., how specific SDCmethods can be used to satisfy specific privacy models and
thereby offer ex ante privacy guarantees).

e book is organized as follows.

• Chapter 2 details the basic notions of privacy in data releases: types of data releases, privacy
threats and metrics, and families of SDC methods.

• Chapter 3 offers a comprehensive overview of SDC methods, classified into perturbative
and non-perturbative ones.

• Chapter 4 describes how disclosure risk can be empirically quantified via record linkage.

• Chapter 5 discusses the well-known k-anonymity privacy model, which is focused on pre-
venting re-identification of individuals, and details which data protection mechanisms can
be used to enforce it.

• Chapter 6 describes two extensions of k-anonymity (l-diversity and t-closeness) focused
on offering protection against attribute disclosure.

• Chapter 7 presents in detail how t-closeness can be attained on top of k-anonymity by
relying on data microaggregation (i.e., a specific SDC method based on data clustering).

• Chapter 8 describes the differential privacy model, which mainly focuses on providing sani-
tized answers with robust privacy guarantees to specific queries. We also explain SDC tech-
niques that can be used to attain differential privacy. We also discuss in detail the relation-
ship between differential privacy and k-anonymity-based models (t-closeness, specifically).

• Chapters 9 and 10 present two state-of-the-art approaches to offer utility-preserving dif-
ferentially private data releases by relying on the notion of k-anonymous data releases and
on multivariate and univariate microaggregation, respectively.

• Chapter 11 summarizes general conclusions and introduces some topics for future research.
More specific conclusions are given at the end of each chapter.
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Privacy in Data Releases
References to privacy were already present in the writings of Greek philosophers when they dis-
tinguish the outer (public) from the inner (private). Nowadays privacy is considered a fundamental
right of individuals [34, 101]. Despite this long history, the formal description of the “right to
privacy” is quite recent. It was coined by Warren and Brandeis, back in 1890, in an article [103]
published in the Harvard Law Review. ese authors presented laws as dynamic systems for the
protection of individuals whose evolution is triggered by social, political, and economic changes.
In particular, the conception of the right to privacy is triggered by the technical advances and new
business models of the time. Quoting Warren and Brandeis:

Instantaneous photographs and newspaper enterprise have invaded the sacred
precincts of private and domestic life; and numerous mechanical devices threaten to
make good the prediction that what is whispered in the closet shall be proclaimed
from the house-tops.

Warren and Brandeis argue that the “right to privacy” was already existent in many areas of the
common law; they only gathered all these sparse legal concepts, and put them into focus under
their common denominator. Within the legal framework of the time, the “right to privacy” was
part of the right to life, one of the three fundamental individual rights recognized by the U.S.
constitution.

Privacy concerns revived again with the invention of computers [31] and information ex-
change networks, which skyrocketed information collection, storage and processing capabilities.
e generalization of population surveys was a consequence. e focus was then on data protec-
tion.

Nowadays, privacy is widely considered a fundamental right, and it is supported by inter-
national treaties and many constitutional laws. For example, the Universal Declaration of Human
Rights (1948) devotes its Article 12 to privacy. In fact, privacy has gained worldwide recognition
and it applies to a wide range of situations such as: avoiding external meddling at home, limiting
the use of surveillance technologies, controlling processing and dissemination of personal data,
etc.

As far as the protection of individuals’ data is concerned, privacy legislation is based on sev-
eral principles [69, 101]: collection limitation, purpose specification, use limitation, data quality,
security safeguards, openness, individual participation, and accountability. Although, with the
appearance of big data, it is unclear if any of these principles is really effective [93].
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Among all the aspects that relate to data privacy, we are especially interested in data dissem-
ination. Dissemination is, for instance, the primary task of National Statistical Institutes. ese
aim at offering an accurate picture of society; to that end, they collect and publish statistical data
on a wide range of aspects such as economy, population, etc. Legislation usually assimilates pri-
vacy violations in data dissemination to individual identifiability [1, 2]; for instance, Title 13,
Chapter 1.1 of the U.S. Code states that “no individual should be re-identifiable in the released
data.”

For a more comprehensive review of the history of privacy, check [43]. A more visual per-
spective of privacy is given by the timelines [3, 4]. In [3] key privacy-related events between 1600
(when it was a civic duty to keep an eye on your neighbors) and 2008 (after the U.S. Patriot Act
and the inception of Facebook) are listed. In [4] key moments that have shaped privacy-related
laws are depicted.

2.1 TYPESOFDATARELEASES
e type of data being released determines the potential threats to privacy as well as the most
suitable protection methods. Statistical databases come in three main formats.

• Microdata. e term “microdata” refers to a record that contains information related to a
specific individual (a citizen or a company). A microdata release aims at publishing raw
data, that is, a set of microdata records.

• Tabular data. Cross-tabulated values showing aggregate values for groups of individuals are
released. e term contingency (or frequency) table is used when counts are released, and
the term “magnitude table” is used for other aggregate magnitudes. ese types of data is
the classical output of official statistics.

• Queryable databases, that is, interactive databases to which the user can submit statistical
queries (sums, averages, etc.).

Our focus in subsequent chapters is on microdata releases. Microdata offer the greatest level of
flexibility among all types of data releases: data users are not confined to a specific prefixed view
of data; they are able to carry out any kind of custom analysis on the released data. However,
microdata releases are also the most challenging for the privacy of individuals.

2.2 MICRODATA SETS
Amicrodata set can be represented as a table (matrix) where each row refers to a different individ-
ual and each column contains information regarding one of the attributes collected. We use X to
denote the collected microdata file. We assume that X contains information about n respondents
and m attributes. We use xi to refer to the record contributed by respondent i , and xj (or Xj ) to
refer to attribute j . e value of attribute j for respondent i is denoted by x

j
i .
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e attributes in a microdata set are usually classified in the following non-exclusive cate-
gories.

• Identifiers. An attribute is an identifier if it provides unambiguous re-identification of the
individual to which the record refers. Some examples of identifier attributes are the social
security number, the passport number, etc. If a record contains an identifier, any sensitive
information contained in other attributes may immediately be linked to a specific individual.
To avoid direct re-identification of an individual, identifier attributes must be removed or
encrypted. In the following chapters, we assume that identifier attributes have previously
been removed.

• Quasi-identifiers. Unlike an identifier, a quasi-identifier attribute alone does not lead to
record re-identification. However, in combination with other quasi-identifier attributes,
it may allow unambiguous re-identification of some individuals. For example, [99] shows
that 87% of the population in the U.S. can be unambiguously identified by combining a
5-digit ZIP code, birth date, and sex. Removing quasi-identifier attributes, as proposed
for the identifiers, is not possible, because quasi-identifiers are most of the time required
to perform any useful analysis of the data. Deciding whether a specific attribute should
be considered a quasi-identifier is a thorny issue. In practice, any information an intruder
has about an individual can be used in record re-identification. For uninformed intruders,
only the attributes available in an external non-anonymized data set should be classified as
quasi-identifiers; in the presence of informed intruders any attribute may potentially be a
quasi-identifier. us, in the strictest case, to make sure all potential quasi-identifiers have
been removed, one ought to remove all attributes (!).

• Confidential attributes.Confidential attributes hold sensitive information on the individuals
that took part in the data collection process (e.g., salary, health condition, sex orientation,
etc.). e primary goal of microdata protection techniques is to prevent intruders from
learning confidential information about a specific individual. is goal involves not only
preventing the intruder from determining the exact value that a confidential attribute takes
for some individual, but also preventing accurate inferences on the value of that attribute
(such as bounding it).

• Non-confidential attributes. Non-confidential attributes are those that do not belong to any
of the previous categories. As they do not contain sensitive information about individuals
and cannot be used for record re-identification, they do not affect our discussion on dis-
closure limitation for microdata sets. erefore, we assume that none of the attributes in X

belong to this category.
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2.3 FORMALIZINGPRIVACY

A first attempt to come up with a formal definition of privacy was made by Dalenius in [14]. He
stated that access to the released data should not allow any attacker to increase his knowledge
about confidential information related to a specific individual. In other words, the prior and the
posterior beliefs about an individual in the database should be similar. Because the ultimate goal in
privacy is to keep the secrecy of sensitive information about specific individuals, this is a natural
definition of privacy. However, Dalenius’ definition is too strict to be useful in practice. is
was illustrated with two examples [29]. e first one considers an adversary whose prior view
is that everyone has two left feet. By accessing a statistical database, the adversary learns that
almost everybody has one left foot and one right foot, thus modifying his posterior belief about
individuals to a great extent. In the second example, the use of auxiliary information makes things
worse. Suppose that a statistical database teaches the average height of a group of individuals, and
that it is not possible to learn this information in any other way. Suppose also that the actual height
of a person is considered to be a sensitive piece of information. Let the attacker have the following
side information: “Adam is one centimeter taller than the average English man.” Access to the
database teaches Adam’s height, while having the side information but no database access teaches
much less. us, Dalenius’ view of privacy is not feasible in presence of background information
(if any utility is to be provided).

e privacy criteria used in practice offer only limited disclosure control guarantees. Two
main views of privacy are used for microdata releases: anonymity (it should not be possible to re-
identify any individual in the published data) and confidentiality or secrecy (access to the released
data should not reveal confidential information related to any specific individual).

e confidentiality view of privacy is closer to Dalenius’ proposal, being the main difference
that it limits the amount of information provided by the data set rather than the change between
prior and posterior beliefs about an individual. ere are several approaches to attain confiden-
tiality. A basic example of SDC technique that gives confidentiality is noise addition. By adding
a random noise to a confidential data item, we mask its value: we report a value drawn from a
random distribution rather than the actual value. e amount of noise added determines the level
of confidentiality.

e anonymity view of privacy seeks to hide each individual in a group.is is indeed quite
intuitive a view of privacy: the privacy of an individual is protected if we are not able to distinguish
her from other individuals in a group.is view of privacy is commonly used in legal frameworks.
For instance, the U.S.Health Insurance Portability and Accountability Act (HIPAA) of 1996 requires
removing several attributes that could potentially identify an individual; in this way, the individual
stays anonymous. However, we should keep in mind that if the value of the confidential attribute
has a small variability within the group of indistinguishable individuals, disclosure still happens
for these individuals: even if we are not able to tell which record belongs to each of the individuals,
the low variability of the confidential attribute gives us a good estimation of its actual value.
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eHealth Insurance Portability and Accountability Act (HIPAA)
e Privacy Rule allows a covered entity to de-identify data by removing all 18 ele-

ments that could be used to identify the individual or the individual’s relatives, employers, or
household members; these elements are enumerated in the Privacy Rule. e covered entity
also must have no actual knowledge that the remaining information could be used alone or
in combination with other information to identify the individual who is the subject of the
information. Under this method, the identifiers that must be removed are the following:

• Names.

• All geographic subdivisions smaller than a state, including street address, city, county,
precinct, ZIP code, and their equivalent geographical codes, except for the initial three
digits of a ZIP code if, according to the current publicly available data from the Bureau
of the Census:

– e geographic unit formed by combining all ZIP codes with the same three
initial digits contains more than 20,000 people.

– e initial three digits of a ZIP code for all such geographic units containing
20,000 or fewer people are changed to 000.

• All elements of dates (except year) for dates directly related to an individual, including
birth date, admission date, discharge date, date of death; and all ages over 89 and all
elements of dates (including year) indicative of such age, except that such ages and
elements may be aggregated into a single category of age 90 or older.

• Telephone numbers.

• Facsimile numbers.

• Electronic mail addresses.

• Social security numbers.

• Medical record numbers.

• Health plan beneficiary numbers.

• Account numbers.

• Certificate/license numbers.

• Vehicle identifiers and serial numbers, including license plate numbers.

• Device identifiers and serial numbers.
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..

• Web universal resource locators (URLs).

• Internet protocol (IP) address numbers.

• Biometric identifiers, including fingerprints and voiceprints.

• Full-face photographic images and any comparable images.

• Any other unique identifying number, characteristic, or code, unless otherwise permit-
ted by the Privacy Rule for re-identification.

2.4 DISCLOSURERISK INMICRODATA SETS
When publishing a microdata file, the data collector must guarantee that no sensitive information
about specific individuals is disclosed. Usually two types of disclosure are considered in microdata
sets [44].

• Identity disclosure. is type of disclosure violates privacy viewed as anonymity. It occurs
when the intruder is able to associate a record in the released data set with the individual that
originated it. After re-identification, the intruder associates the values of the confidential
attributes for the record to the re-identified individual. Two main approaches are usually
employed to measure identity disclosure risk: uniqueness and reidentification.

– Uniqueness. Roughly speaking, the risk of identity disclosure is measured as the prob-
ability that rare combinations of attribute values in the released protected data are
indeed rare in the original population the data come from.

– Record linkage. is is an empirical approach to evaluate the risk of disclosure. In this
case, the data protector (also known as data controller) uses a record linkage algo-
rithm (or several such algorithms) to link each record in the anonymized data with a
record in the original data set. Since the protector knows the real correspondence be-
tween original and anonymized records, he can determine the percentage of correctly
linked pairs, which he uses to estimate the number of re-identifications that might
be obtained by a specialized intruder. If this number is unacceptably high, then more
intense anonymization by the controller is needed before the anonymized data set is
ready for release.

• Attribute disclosure.is type of disclosure violates privacy viewed as confidentiality. It occurs
when access to the released data allows the intruder to determine the value of a confidential
attribute of an individual with enough accuracy.

e above two types of disclosure are independent. Even if identity disclosure happens, there
may not be attribute disclosure if the confidential attributes in the released data set have been
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masked. On the other side, attribute disclosure may still happen even without identity disclosure.
For example, imagine that the salary is one of the confidential attributes and the job is a quasi-
identifier attribute; if an intruder is interested in a specific individual whose job he knows to be
“accountant” and there are several accountants in the data set (including the target individual), the
intruder will be unable to re-identify the individual’s record based only on her job, but he will be
able to lower-bound and upper-bound the individual’s salary (which lies between the minimum
and the maximum salary of all the accountants in the data set). Specifically, attribute disclosure
happens if the range of possible salary values for the matching records is narrow.

2.5 MICRODATAANONYMIZATION
To avoid disclosure, data collectors do not publish the original microdata set X , but a modified
version Y of it. is data set Y is called the protected, anonymized, or sanitized version of X .
Microdata protection methods can generate the protected data set by either masking the original
data or generating synthetic data.

• Masking.e protected data Y are generated by modifying the original records in X . Mask-
ing induces a relation between the records in Y and the original records in X . When ap-
plied to quasi-identifier attributes, the identity behind each record is masked (which yields
anonymity). When applied to confidential attributes, the values of the confidential data are
masked (which yields confidentiality, even if the subject to whom the record corresponds
might still be re-identifiable). Masking methods can in turn be divided in two categories
depending on their effect on the original data.

– Perturbative masking. e microdata set is distorted before publication. e perturba-
tion method used should be such that the statistics computed on the perturbed data
set do not differ significantly from the statistics that would be obtained on the original
data set. Noise addition, microaggregation, data/rank swapping, microdata rounding,
resampling, and PRAM are examples of perturbative masking methods.

– Non-perturbative masking. Non-perturbative methods do not alter data; rather, they
produce partial suppressions or reductions of detail/coarsening in the original data set.
Sampling, global recoding, top and bottom coding, and local suppression are examples
of non-perturbative masking methods.

• Synthetic data. e protected data set Y consists of randomly simulated records that do not
directly derive from the records inX ; the only connection betweenX and Y is that the latter
preserves some statistics from the former (typically amodel relating the attributes inX).e
generation of a synthetic data set takes three steps [27, 77]: (i) a model for the population
is proposed, (ii) the model is adjusted to the original data set X , and (iii) the synthetic data
set Y is generated by drawing from the model. ere are three types of synthetic data sets:
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– Fully synthetic [77], where every attribute value for every record has been synthesized.
e population units (subjects) contained in Y are not the original population units in
X but a new sample from the underlying population.

– Partially synthetic [74], where only the data items (the attribute values) with high risk
of disclosure are synthesized. e population units in Y are the same population units
in X (in particular, X and Y have the same number of records).

– Hybrid [19, 65], where the original data set is mixed with a fully synthetic data set.

In a fully synthetic data set any dependency between X and Y must come from the model.
In other words, X and Y are independent conditionally to the adjusted model. e dis-
closure risk in fully synthetic data sets is usually low, as we justify next. On the one side,
the population units in Y are not the original population units in X . On the other side,
the information about the original data X conveyed by Y is only the one incorporated by
the model, which is usually limited to some statistical properties. In a partially synthetic
data set, the disclosure risk is reduced by replacing the values in the original data set at a
higher risk of disclosure with simulated values. e simulated values assigned to an indi-
vidual should be representative but are not directly related to her. In hybrid data sets, the
level of protection we get is the lowest; mixing original and synthetic records breaks the
conditional independence between the original data and the synthetic data. e parameters
of the mixture determine the amount of dependence.

2.6 MEASURING INFORMATIONLOSS
e evaluation of the utility of the protected data set must be based on the intended uses of the
data. e closer the results obtained for these uses between the original and the protected data,
the more utility is preserved. However, very often, microdata protection cannot be performed in
a data use specific manner, due to the following reasons.

• Potential data uses are very diverse and it may even be hard to identify them all at the
moment of the data release.

• Even if all the data uses could be identified, releasing several versions of the same original
data set so that the i-th version has been optimized for the i-th data use may result in
unexpected disclosure.

Since data must often be protected with no specific use in mind, it is usually more appropriate to
refer to information loss rather than to utility. Measures of information loss provide generic ways
for the data protector to assess how much harm is being inflicted to the data by a particular data
masking technique.

Information loss measures for numerical data. Assume a microdata set X with n individuals
(records) x1; : : : ; xn and m continuous attributes x1; : : : ; xm. Let Y be the protected microdata
set. e following tools are useful to characterize the information contained in the data set:
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• Covariance matrices V (on X) and V 0 (on Y ).

• Correlation matrices R and R0.

• Correlation matrices RF and RF0 between the m attributes and the m factors
P C1; P C2; : : : ; P Cp obtained through principal components analysis.

• Communality between each of the m attributes and the first principal component P C1

(or other principal components P Ci ’s). Communality is the percent of each attribute that
is explained by P C1 (or P Ci ). Let C be the vector of communalities for X , and C 0 the
corresponding vector for Y .

• Factor score coefficient matrices F and F 0. Matrix F contains the factors that should mul-
tiply each attribute in X to obtain its projection on each principal component. F 0 is the
corresponding matrix for Y .

ere does not seem to be a single quantitative measure which completely reflects the structural
differences between X and Y . erefore, in [25, 87] it was proposed to measure the information
loss through the discrepancies between matrices X , V , R, RF, C , and F obtained on the original
data and the corresponding X 0, V 0, R0, RF0, C 0, and F 0 obtained on the protected data set. In
particular, discrepancy between correlations is related to the information loss for data uses such
as regressions and cross-tabulations. Matrix discrepancy can be measured in at least three ways.

• Mean square error. Sum of squared componentwise differences between pairs of matrices,
divided by the number of cells in either matrix.

• Mean absolute error. Sum of absolute componentwise differences between pairs of matrices,
divided by the number of cells in either matrix.

• Mean variation. Sum of absolute percent variation of components in the matrix computed
on the protected data with respect to components in the matrix computed on the original
data, divided by the number of cells in either matrix. is approach has the advantage of
not being affected by scale changes of attributes.

Information loss measures for categorical data. ese have been usually based on direct compari-
son of categorical values, comparison of contingency tables, or on Shannon’s entropy [25]. More
recently, the importance of the semantics underlying categorical data for data utility has been
realized [60, 83]. As a result, semantically grounded information loss measures that exploits the
formal semantics provided by structured knowledge sources (such as taxonomies or ontologies)
have been proposed both to measure the practical utility and to guide the sanitization algorithms
in terms of the preservation of data semantics [23, 57, 59].

Bounded information loss measures. e information loss measures discussed above are un-
bounded, i.e., they do not take values in a predefined interval. On the other hand, as discussed
below, disclosure risk measures are naturally bounded (the risk of disclosure is naturally bounded
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between 0 and 1). Defining bounded information loss measures may be convenient to enable the
data protector to trade off information loss against disclosure risk. In [61], probabilistic informa-
tion loss measures bounded between 0 and 1 are proposed for continuous data.

Propensity scores: a global information loss measure for all types of data. In [105], an infor-
mation loss measure U applicable to continuous and categorical microdata was proposed. It is
computed as follows.

1. Merge the original microdata set X and the anonymized microdata set Y , and add to the
merged data set a binary attribute T with value 1 for the anonymized records and 0 for the
original records.

2. Regress T on the rest of attributes of the merged data set and call the adjusted attribute OT .
For categorical attributes, logistic regression can be used.

3. Let the propensity score Opi of record i of the merged data set be the value of OT for record i .
en the utility of Y is high if the propensity scores of the anonymized and original records
are similar (this means that, based on the regressionmodel used, anonymized records cannot
be distinguished from original records).

4. Hence, if the number of original and anonymized records is the same, say N , a utility mea-
sure is

U D
1

N

NX
iD1

Œ Opi � 1=2�2:

e farther U from 0, the more information loss, and conversely.

2.7 TRADINGOFF INFORMATIONLOSSAND
DISCLOSURERISK

e goal of SDC to modify data so that sufficient protection is provided at minimum information
loss suggests that a good anonymization method is one close to optimizing the trade-off between
disclosure risk and information loss. Several approaches have been proposed to handle this trade-
off. Here we discuss SDC scores and R-U maps.

SDC scores
An SDC score is a formula that combines the effects of information loss and disclosure risk
in a single figure. Having adopted an SDC score as a good trade-off measure, the goal is to
optimize the score value. Following this idea, [25] proposed a score for method performance
rating based on the average of information loss and disclosure risk measures. For each method M

and parameterization P , the following score is computed:

ScoreM;P .X; Y / D
IL.X; Y /CDR.X; Y /

2
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where IL is an information loss measure, DR is a disclosure risk measure, and Y is the pro-
tected data set obtained after applying method M with parameterization P to an original data
set X . In [25] IL and DR were computed using a weighted combination of several information
loss and disclosure risk measures. With the resulting score, a ranking of masking methods (and
their parametrizations) was obtained. Using a score permits regarding the selection of a masking
method and its parameters as an optimization problem: a masking method can be applied to the
original data file and then a post-masking optimization procedure can be applied to decrease the
score obtained (that is, to reduce information loss and disclosure risk). On the negative side, no
specific score weighting can do justice to all methods. us, when ranking methods, the values
of all measures of information loss and disclosure risk should be supplied along with the overall
score.

R-Umaps
A tool which may be enlightening when trying to construct a score or, more generally, optimize
the trade-off between information loss and disclosure risk is a graphical representation of pairs
of measures (disclosure risk, information loss) or their equivalents (disclosure risk, data utility).
Such maps are called R-U confidentiality maps [28]. Here, R stands for disclosure risk and U for
data utility. In its most basic form, an R-U confidentiality map is the set of paired values (R,U)
of disclosure risk and data utility that correspond to the various strategies for data release (e.g.,
variations on a parameter). Such (R,U) pairs are typically plotted in a two-dimensional graph, so
that the user can easily grasp the influence of a particular method and/or parameter choice.

2.8 SUMMARY
is chapter has presented a broad overview of disclosure risk limitation. We have identified the
privacy threats (identity and/or attribute disclosure), and we have introduced the main families of
SDCmethods (data masking via perturbative and non-perturbative methods, as well as synthetic
data generation). Also, we have surveyed disclosure risk and information loss metrics and we have
discussed how risk and information loss can be traded off in view of finding the best SDCmethod
and parameterization.
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C H A P T E R 3

AnonymizationMethods for
Microdata

It was commented in Section 2.5 that the protected data set Y was generated either by masking
the original data set X or by building it from scratch based on a model of the original data.
Microdata masking techniques were further classified into perturbative masking (which distorts
the original data and leads to the publication of non-truthful data) and non-perturbative masking
(which reduces the amount of information, either by suppressing some of the data or by reducing
the level of detail, but preserves truthfulness).is chapter classifies and reviews somewell-known
SDC techniques. ese techniques are not only useful on their own but they also constitute the
basis to enforce the privacy guarantees required by privacy models.

3.1 NON-PERTURBATIVEMASKINGMETHODS
Non-perturbative methods do not alter data; rather, they produce partial suppressions or reduc-
tions of detail in the original data set.

Sampling
Instead of publishing the original microdata file X , what is published is a sample S of the original
set of records [104]. Sampling methods are suitable for categorical microdata [58], but for con-
tinuous microdata they should probably be combined with other masking methods. e reason
is that sampling alone leaves a continuous attribute unperturbed for all records in S . us, if any
continuous attribute is present in an external administrative public file, unique matches with the
published sample are very likely: indeed, given a continuous attribute and two respondents xi

and xj , it is unlikely that both respondents will take the same value for the continuous attribute
unless xi D xj (this is true even if the continuous attribute has been truncated to represent it dig-
itally). If, for a continuous identifying attribute, the score of a respondent is only approximately
known by an attacker, it might still make sense to use sampling methods to protect that attribute.
However, assumptions on restricted attacker resources are perilous and may prove definitely too
optimistic if good quality external administrative files are at hand.

Generalization
is technique is also known as global recoding in the statistical disclosure control literature. For
a categorical attribute X i , several categories are combined to form new (less specific) categories,
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thus resulting in a new Y i with jDom.Y i /j < jDom.X i /j where j·j is the cardinality operator
and Dom.·/ is the domain where the attribute takes values. For a continuous attribute, general-
ization means replacing X i by another attribute Y i which is a discretized version of X i . In other
words, a potentially infinite range Dom.X i / is mapped onto a finite range Dom.Y i /. is is
the technique used in the �-Argus SDC package [45]. is technique is more appropriate for
categorical microdata, where it helps disguise records with strange combinations of categorical
attributes. Generalization is used heavily by statistical offices.

Example3.1 If there is a record with “Marital status =Widow/er” and “Age = 17,” generalization
could be applied to “Marital status” to create a broader category “Widow/er or divorced,” so that
the probability of the above record being unique would diminish. Generalization can also be used
on a continuous attribute, but the inherent discretization leads very often to an unaffordable loss
of information. Also, arithmetical operations that were straightforward on the original X i are no
longer easy or intuitive on the discretized Y i .

Top and bottom coding
Top and bottom coding are special cases of generalization which can be used on attributes that
can be ranked, that is, continuous or categorical ordinal. e idea is that top values (those above
a certain threshold) are lumped together to form a new category. e same is done for bottom
values (those below a certain threshold).

Local suppression
is is a masking method in which certain values of individual attributes are suppressed with the
aim of increasing the set of records agreeing on a combination of key values. Ways to combine
local suppression and generalization are implemented in the �-Argus SDC package [45].

If a continuous attribute X i is part of a set of key attributes, then each combination of key
values is probably unique. Since it does not make sense to systematically suppress the values of
X i , we conclude that local suppression is rather oriented to categorical attributes.

3.2 PERTURBATIVEMASKINGMETHODS
Noise addition
Additive noise is a family of perturbative masking methods. e values in the original data set
are masked by adding some random noise. e statistical properties of the noise being added
determine the effect of noise addition on the original data set. Several noise addition procedures
have been developed, each of them with the aim to better preserve the statistical properties of the
original data.

• Masking by uncorrelated noise addition.e vector of observations, xi , for the i-th attribute of
the original data set X i is replaced by a vector yi D xi C ei where ei is a vector of normally
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distributed errors. Let ei
k
and ei

l
be, respectively, the k-th and l-th components of vector

ei . We have that ei
k
and ei

l
are independent and drawn from a normal distribution N.0; s2

i /.
e usual approach is for the variance of the noise added to attribute X i to be proportional
to the variance of X i ; that is, s2

i D ˛Var.xi /. e term “uncorrelated” is used to mean that
there is no correlation between the noise added to different attributes.
is method preserves means and covariances,

E.yi / D E.xi /CE.ei / D E.xi /I

Cov.yi ; yj / D Cov.xi ; xj /:

However, neither variances nor correlations are preserved

Var.yi / D Var.xi /C Var.ei / D .1C ˛/Var.xi /I

�yi ;yj D
Cov.yi ; yj /p

Var.yi /Var.yj /
D

1

1C ˛
�yi ;yj :

• Masking by correlated noise addition. Noise addition alone always modifies the variance of the
original attributes. us, if we want to preserve the correlation coefficients of the original
data, the covariances must be modified. is is what masking by correlated noise does. By
taking the covariance matrix of the noise to be proportional to the covariance matrix of the
original data we have:

E.yi / D E.xi /CE.ei / D E.xi /I

Cov.yi ; yj / D Cov.xi ; xj /C Cov.ei ; ej / D .1C ˛/Cov.xi ; xj /I

Var.yi / D Var.xi /C Var.ei / D .1C ˛/Var.xi /I

�yi ;yj D
Cov.yi ; yj /p

Var.yi /Var.yj /
D

1C ˛

1C ˛
�yi ;yj D �yi ;yj :

• Masking by noise addition and linear transformation. In [48], a method is proposed that en-
sures by additional transformations that the sample covariance matrix of the masked at-
tributes is an unbiased estimator for the covariance matrix of the original attributes.

• Masking by noise addition and nonlinear transformation. Combining simple additive noise
and nonlinear transformation has also been proposed, in such a way that application to
discrete attributes is possible and univariate distributions are preserved. Unfortunately, the
application of this method is very time-consuming and requires expert knowledge on the
data set and the algorithm. See [44] for more details.
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Noise addition methods with normal distributions are naturally meant for continuous data, even
though some adaptations to categorical data have been also proposed [76]. Moreover, the intro-
duction of the differential privacy model for disclosure control has motivated the use of other
noise distributions. e focus here is on the preservation of the privacy guarantees of the model
rather than the statistical properties of the data. e addition of uncorrelated Laplace distributed
noise is the most common approach to attain differential privacy [29]. For the case of discrete
data, the geometric distribution [33] is a better alternative to the Laplace distributed noise. It has
also been shown that the Laplace distribution is not the optimal noise in attaining differential
privacy for continuous data [92].

Data/rank swapping
Data swapping was originally presented as an SDC method for databases containing only cat-
egorical attributes. e basic idea behind the method is to transform a database by exchanging
values of confidential attributes among individual records. Records are exchanged in such a way
that low-order frequency counts or marginals are maintained.

In spite of the original procedure not being very used in practice, its basic idea had a clear
influence in subsequent methods. A variant of data swapping for microdata is rank swapping,
which will be described next in some detail. Although originally described only for ordinal at-
tributes [36], rank swapping can also be used for any numerical attribute. See Algorithm 1. First,
values of an attributeA are ranked in ascending order, then each ranked value ofA is swapped with
another ranked value randomly chosen within a restricted range (e.g., the rank of two swapped
values cannot differ by more than p% of the total number of records, where p is an input param-
eter).

is algorithm is independently used on each original attribute in the original data set. It is
reasonable to expect that multivariate statistics computed from data swapped with this algorithm
will be less distorted than those computed after an unconstrained swap.

Microaggregation
Microaggregation is a family of SDC techniques for continuous microdata. e rationale behind
microaggregation is that confidentiality rules in use allow publication of microdata sets if records
correspond to groups of k or more individuals, where no individual dominates (i.e., contributes
too much to) the group and k is a threshold value. Strict application of such confidentiality rules
leads to replacing individual values with values computed on small aggregates (microaggregates)
prior to publication. is is the basic principle of microaggregation. To obtain microaggregates
in a microdata set with n records, these are combined to form g groups of size at least k. For each
attribute, the average value over each group is computed and is used to replace each of the original
averaged values. Groups are formed using a criterion of maximal similarity. Once the procedure
has been completed, the resulting (modified) records can be published. e optimal k-partition
(from the information loss point of view) is defined to be the one that maximizes within-group
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Algorithm 1 Rank swapping with swapping restricted to p%
Data: X : original data set

p: percentage of records within the allowed swapping range
Result e rank swapped data set

For Each attribute X i Do
Order theX by attributeX i (records with missing values for attributeX i as well as records

with value set to top- or bottom-code are not considered).
Let N be the number of records considered.
Tag all considered records as unswapped.
While there are unswapped records Do

Let i be the lowest unswapped rank.
Randomly select an unswapped record with rank in the interval Œi C 1; M� with

M D minfN; i C p �N=100g. Suppose the selected record has rank j .
Swap the value of attribute A between records ranked i and j .

EndWhile
End For
Return X

homogeneity; the higher the within-group homogeneity, the lower the information loss, since
microaggregation replaces values in a group by the group centroid. e sum of squares criterion is
common to measure homogeneity in clustering.e within-groups sum of squares SSE is defined
as:

SSE D
gX

iD1

niX
j D1

.xij � Nxi /
0.xij � Nxi /:

e between-groups sum of squares SSA is

SSA D
gX

iD1

ni . Nxi � Nx/0. Nxi � Nx/:

e total sum of squares is SST D SSAC SSE or explicitly

SST D
gX

iD1

niX
j D1

.xij � Nx/0.xij � Nx/:

e lower the SSE, the higher the within group homogeneity. us, in terms of sums of
squares, the optimal k-partition is the one that minimizes SSE (or equivalently, maximizes SSA).

Given a microdata set consisting of p attributes, these can be microaggregated together
or partitioned into several groups of attributes and then microaggregated. Also, the way to form
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groups may vary. Several taxonomies are possible to classify the microaggregation algorithms in
the literature: (i) fixed group size [17, 26, 45] vs. variable group size [21, 49, 57]; (ii) exact optimal
(only for the univariate case, [41]) vs. heuristic microaggregation (the rest of the microaggrega-
tion literature); (iii) categorical [26, 57] vs. continuous (the rest of the references cited in this
paragraph). Also, depending on whether they deal with one or several attributes at a time, mi-
croaggregation methods can be classified into univariate and multivariate.

• Univariate methods deal with multi-attribute data sets by microaggregating one attribute
at a time. Input records are sorted by the first attribute, then groups of successive k values
of the first attribute are created and all values within that group are replaced by the group
representative (e.g., centroid). e same procedure is repeated for the rest of the attributes.
Notice that all attribute values of each record are moved together when sorting records by
a particular attribute; hence, the relation between the attribute values within each record
is preserved. is approach is known as individual ranking [16, 17]. Individual ranking
just reduces the variability of attributes, thereby providing some anonymization. In [25] it
was shown that individual ranking causes low information loss and, thus, its output better
preserves analytical utility. However, the disclosure risk in the anonymized output remains
unacceptably high [22].

• To deal with several attributes at a time, the trivial option is to map multi-attribute data
sets to univariate data by projecting the former onto a single axis (e.g., using the sum of z-
scores or the first principal component, see [16]) and then use univariate microaggregation
on the univariate data. Another option avoiding the information loss due to single-axis pro-
jection is to use multivariate microaggregation able to deal with unprojected multi-attribute
data [21]. If we define optimal microaggregation as finding a partition in groups of size at
least k such that within-groups homogeneity is maximum, it turns out that, while optimal
univariate microaggregation can be solved in polynomial time [41], unfortunately optimal
multivariate microaggregation is NP-hard [70]. is justifies the use of heuristic methods
for multivariate microaggregation, such as the MDAV (Maximum Distance to Average
Vector, [20, 26]). In any case, multivariate microaggregation leads to higher information
loss than individual ranking [25].

To illustrate these approaches, we next give the details of the MDAV heuristic algorithm
for multivariate fixed group size microaggregation on unprojected continuous data.

1. Compute the average record Nx of all records in the data set. Consider the most distant record
xr to the average record Nx (using the squared Euclidean distance).

2. Find the most distant record xs from the record xr considered in the previous step.

3. Form two groups around xr and xs , respectively. One group contains xr and the k � 1

records closest to xr . e other group contains xs and the k � 1 records closest to xs .
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4. If there are at least 3k records which do not belong to any of the two groups formed in Step
3, go to Step 1 taking as new data set the previous data set minus the groups formed in the
last instance of Step 3.

5. If there are between 3k � 1 and 2k records which do not belong to any of the two groups
formed in Step 3: a) compute the average record Nx of the remaining records; b) find the
most distant record xr from Nx; c) form a group containing xr and the k � 1 records closest
to xr ; d) form another group containing the rest of records. Exit the algorithm.

6. If there are fewer than 2k records which do not belong to the groups formed in Step 3, form
a new group with those records and exit the algorithm.

e above algorithm can be applied independently to each group of attributes resulting from
partitioning the set of attributes in the data set. In [57], it has been extended to offer better utility
for categorical data and in [9] to support attribute values with variable cardinality (set-valued
data).

3.3 SYNTHETICDATAGENERATION
Publication of synthetic—i.e., simulated—data was proposed long ago as a way to guard against
statistical disclosure. e idea is to randomly generate data with the constraint that certain statis-
tics or internal relationships of the original data set should be preserved. More than twenty years
ago, Rubin suggested in [77] to create an entirely synthetic data set based on the original survey
data and multiple imputation. A simulation study of this approach was given in [75].

As stated in 2.5, three types of synthetic data sets are usually considered: (i) fully synthetic
data sets [77], where every data item has been synthesized, (ii) partially synthetic data sets [74],
where only some variables of some records are synthesized (usually the ones that present a greater
risk of disclosure), and (iii) hybrid data sets [19, 65], where the original data is mixed with the
synthesized data.

As also stated in 2.5, the generation of fully synthetic data [77] set takes three steps: (i)
a model for the population is proposed, (ii) the proposed model is adjusted to the original data
set, and (iii) the synthetic data set is generated by drawing from the model (without any further
dependency on the original data). e utility of fully synthetic data sets is highly dependent on
the accuracy of the adjusted model. If the adjusted model fits well the population, the synthetic
data set should be as good as the original data set in terms of statistical analysis power. In this
sense, synthetic data are superior in terms of data utility to masking techniques (which always
lead to some utility loss).

is advantage of synthetic data is, however, mostly theoretical as (except by the relations
between variables that are known in advance) the model must be built from the analysis of the
original data. us, proposing a model that appropriately captures all the properties of the pop-
ulation is, in general, not feasible: there may be dependencies between variables that are difficult
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to model or, even, to observe in the original data. Given that only the properties that are included
in the model will be present in the synthetic data, it is important to include all the properties
of the data that we want to preserve. To reduce the dependency on the models, alternatives to
fully synthetic data have been proposed: partially synthetic data and hybrid data. However, using
these alternative approaches to reduce the dependency on the model has a cost in terms of risk of
disclosure.

As far as the risk of disclosure is concerned, the generation of fully synthetic data is consid-
ered to be a very safe approach. Because the synthetic data is generated based solely on the adjusted
model, analyzing the risk of disclosure of the synthetic data can be reduced to analyzing the risk
of disclosure of the information about the original data that the model incorporates. Because this
information is usually reduced to some statistical properties of the original data, disclosure risk is
under control. In particular in fully synthetic data, they seem to circumvent the re-identification
problem: since published records are invented and do not derive from any original record, it might
be concluded that no individual can complain from having been re-identified. At a closer look
this advantage is less clear. If, by chance, a published synthetic record matches a particular cit-
izen’s non-confidential attributes (age, marital status, place of residence, etc.) and confidential
attributes (salary, mortgage, etc.), re-identification using the non-confidential attributes is easy
and that citizen may feel that his confidential attributes have been unduly revealed. In that case,
the citizen is unlikely to be happy with or even understand the explanation that the record was
synthetically generated.

Unlike fully synthetic data, neither partially synthetic nor hybrid data can circumvent re-
identification. With partial synthesis, the population units in the original data set are the same
population units in the partially synthetic data set. In hybrid data sets the population units in the
original data set are present but mixed with synthetic ones.

On the other hand, limited data utility is another problem of synthetic data. Only the
statistical properties explicitly captured by the model used by the data protector are preserved. A
logical question here is why not directly publish the statistics one wants to preserve rather than
release a synthetic microdata set. One possible justification for synthetic microdata would be if
valid analyses could be obtained on a number of subdomains, i.e., similar results were obtained
in a number of subsets of the original data set and the corresponding subsets of the synthetic
data set. Partially synthetic or hybrid microdata are more likely to succeed in staying useful for
subdomain analysis. e utility of the synthetic data can be improved by increasing the amount
of information that the model includes about the original data. However, this is done at the cost
of increasing the risk of disclosure.

See [27] for more background on synthetic data generation.

3.4 SUMMARY
is chapter has reviewed some of the techniques used for disclosure risk limitation in microdata
sets. For the non-perturbative masking approach we have discussed: sampling, global recoding,
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top- and bottom-coding and local suppression. For the perturbative masking approach we have
detailed: noise addition, data/rank swapping, and microaggregation. Finally, we have also re-
viewed synthetic data generation.
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C H A P T E R 4

Quantifying Disclosure Risk:
Record Linkage

Record linkage (a.k.a. data matching or deduplication) was invented to improve data quality when
matching files. In the context of anonymization it can be used by the data controller to empir-
ically evaluate the disclosure risk associated with an anonymized data set. e data protector or
controller uses a record linkage algorithm (or several such algorithms) to link each record in the
anonymized data with a record in the original data set. Since the protector knows the real corre-
spondence between original and protected records, he can determine the percentage of correctly
linked pairs, which he uses to estimate the number of re-identifications that might be obtained
by a specialized intruder. If the number of re-identifications is too high, the data set needs more
anonymization by the controller before it can be released.

In its most basic approach record linkage is based on matching values of shared attributes.
All the attributes that are common to both data sets are compared at once. A pair of records is
said to match if the common attributes share the same values and they are the only two records
sharing those values. A pair of records is said not to match if they differ in the value of some
common attribute or if there are multiple pairs of records sharing those same attribute values.

Many times an attribute value may have several valid representations or variations. In that
case record linkage based on exactmatching of the values of common attributes is not a satisfactory
approach. Rather than seeking an exact match between common attributes, a similarity function,
sim, between pairs of records is used. For a given pair of records x and y, the similarity function
returns a value between 0 and 1 that represents the degree of similarity between the records x and
y. It holds that:

• sim.x; y/ 2 Œ0; 1�. at is, the degree of similarity is in the range Œ0; 1� with 1 meaning
complete similarity and 0 meaning complete dissimilarity.

• sim.x; y/ D 1 ” x D y.at is, the similarity is 1 if, and only if, both records are equal.

e similarity function between records can be based on the similarity of the values of common
attributes. us, the similarity between records can be computed, for instance, as an average or as
a weighted average of the similarity of the underlying attributes. As for computing the similar-
ity between attributes several approaches have been proposed. For instance, for categorical data:
the edit distance [66] computes the number of insertions, deletions, and substitutions needed to
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transform one string into the other; [56] proposes a measure to evaluate the semantic similarity
between textual values, etc.

4.1 THRESHOLD-BASEDRECORDLINKAGE
reshold-based linkage is the adaptation to similarity functions of attribute matching record
linkage. Rather than saying that two records match when the values of all common attributes
match, we say that they match when they are similar enough. A threshold is used to determine
when two records are similar enough.

When records are to be classified between match and non-match, a single threshold value,
t , is enough:

• sim.x; y/ � t : we classify the pair of records x and y as a match.

• sim.x; y/ < t : we classify the pair of records x and y as a non-match.

e use of a sharp threshold value to distinguish between a match and a non-match may be
too narrow-minded. Probably the amount of misclassifications when the similarity is near the
threshold value could be large. To avoid this issue an extended classification in three classes is
done: match, non-match, and potential match. e match class is used for a pair of records that
have been positively identified as a match, the non-match class is used for pair of records that
have been positively identified as a non-match, and the class potential match is used for a pair
of records that are neither a clear match nor a clear non-match. Classification into the classes
match, non-match, and potential match requires the use of two threshold values tu and td (with
tu > td ), used as follows:

• sim.x; y/ � tu: we classify the pair of records x and y as a match.

• td�sim.x; y/ � tu: we classify the pair of records x and y as a potential match.

• sim.x; y/ < td : we classify the pair of records x and y as a non-match.

4.2 RULE-BASEDRECORDLINKAGE
Basing the classification on a single value of similarity between records may sometimes be too
restrictive. Imagine, for instance, that the data sets contain records related to two types of entities.
It may be the case that the way to measure the similarity between records should be done in a
different way for the different types of entities. is is not possible if we use a single similarity
function.

In rule-based record linkage, we have a vector of similarity functions (e.g., a similarity func-
tion for each of the attributes common to both data sets), rather than a single utility function.
en classification rules test several similarity values and output a classification (either match,
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non-match, or potential match). More formally, a classification rule is a propositional logic for-
mula of the form P ! C , where P test several similarity values combined by the logical operators
^(and), _(or), and :(not), and C is either match, non-match, or potential match. When a rule
is triggered for a pair of records (the pair of records satisfy the conditions in P ), the outcome of
the rule C is used to classify the pair of records.

ere are two main approaches to come up with the set of rules: generate them manually
based on the domain knowledge of the data sets, or use a supervised learning approach in which
pairs of records with the actual classification (match, non-match, or potential match) are passed
to the system for it to automatically learn the rules.

4.3 PROBABILISTICRECORDLINKAGE

Probabilistic record linkage [32, 47] can be seen as an extension of rule-based record linkage in
which the outcome of the rules is not a deterministic class in {match, non-match, potential match}
but a probability distribution over the three classes. e goal in probabilistic record linkage is to
come up with classificationmechanisms with predetermined probabilities of misclassification (the
error of classifying a pair of records related to the same entity as a non-match and the error of
classifying a pair of records related to different entities as a match). Having fixed the probabilities
of misclassification, we can consider the set of classification mechanisms that provide these levels
of misclassification. Among these, there is one mechanism that has especially good properties
and that is known as the optimal classification mechanism. e optimal classification mechanism
for some given levels of misclassification is the one that has the least probability of outputting
potential match. Because pairs of records classified as potential match require further processing
(by a potentially costly human expert), the optimal mechanism should be preferred over all the
other classification mechanisms with given probabilities of misclassification.

Here we present a slightly simplified version of the original work in probabilistic record
linkage [32]. Consider that we have two sets of entities X and Y that are, in principle, not dis-
joint. at is, a given entity can be present in both X and Y . e data sets are generated as a
randomized function of the original data that accounts for the possible variations and errors of
the record corresponding to an entity: for x 2 X the corresponding record is ˛.x/ and for y 2 Y

the corresponding record ˇ.y/. us, even if x D y, it may be ˛.x/ ¤ ˇ.y/ and even if x ¤ y, it
may be ˛.x/ D ˇ.y/.

We use ˛.X/ and ˇ.Y / to represent the data sets to be linked. Linking ˛.X/ and ˇ.Y /

implies considering each pair of records of ˛.X/ � ˇ.Y / and classifying it as either a match, a
non-match, or a potential match. e set ˛.X/ � ˇ.Y / can be split into two parts: the set of real
matches

M D f.˛.x/; ˇ.y// W x D yg;
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and the set of real non-matches

U D f.˛.x/; ˇ.y// W x ¤ yg:

Of course, ex ante determining the actual contents of M and U is not possible; otherwise, there
would be no need for a record linkage methodology.

Like in rule-based record linkage, the first step to determine if two records should be linked
is to compute a vector of similarity functions. We define the similarity vector for ˛.x/ and ˇ.y/

as
.˛.x/; ˇ.y// D .1.˛.x/; ˇ.y//; : : : ; k.˛.x/; ˇ.y///:

Even though we have used .˛.x/; ˇ.y// to emphasize that the vector is computed over pairs of
records of ˛.X/ � ˇ.Y /, it should be noted that the domain of  is X � Y . e set of possible
realizations of  is called the comparison space and is denoted by � .

For a given realization 0 2 � we are interested in two conditional probabilities: the proba-
bility of getting 0 given a real match, P.0jM/, and the probability of 0 given a real non-match,
P.0jU /. With these probabilities we can compute the agreement ratio of 0:

R.0/ D
P.0jM/

P.0jU /
:

During the linkage we observe .˛.x/; ˇ.y// and have to decide whether .˛.x/; ˇ.y// 2M

(classify it as a match) or .˛.x/; ˇ.y// 2 U (classify it as a non-match). To account for the cases
in which the decision between match and non-match is not clear, we also allow the classifica-
tion of .˛.x/; ˇ.y// as a potential match. A linkage rule is used for the classification of the pair
.˛.x/; ˇ.y// based on the similarity vector. us, a linkage rule is a mapping between � (the
comparison space) to a probability distribution over the possible classifications: match (L), non-
match (N ), and potential match (C ).

L W � ! f.pL; pN ; pC / 2 Œ0; 1�3 W pL C pN C pC D 1g:

Of course, a linkage rule need not always give the correct classification. A false match is a
linked pair that is not a real match. A false non-match is a non-linked pair that is a real match.
us, a rule can be tagged with the probability of false matches, � D PL.LjU /, and with the
probability of false non-matches, � D PL.N jM/.

In [32] an optimal linkage rule is presented. e rule is optimal in the sense that for max-
imum tolerable probabilities of misclassification � and �, the rule has the least probability of
outputting a potential match. is rule is based on thresholding the agreement ratio. It classi-
fies each possible similarity vector in � into match, non-match, or potential match according to
the agreement ratio. Given a pair of records .˛.a/; ˇ.b//, the similarity vector .˛.x/; ˇ.y// is
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computed and the classification is given by the rule:8̂<̂
:

R..˛.x/; ˇ.y/// � T� ! match

R..˛.x/; ˇ.y/// � T� ! non � match

T� < R..˛.x/; ˇ.y/// < T� ! potential

where T� and T� are upper and lower threshold values. e error rates for this rule are:

� D
X

2� WR./�T�

P. jU /:

� D
X

2� WR./�T�

P. jM/:

4.4 SUMMARY
is chapter has introduced record linkage. Record linkage is a technique that can be used by
an intruder, for instance, to try to re-identify the records in a published data set. On the other
hand, record linkage can also be used by the data publisher for disclosure risk assessment prior to
data release. e data publisher simulates an intruder by running a record linkage on the data set
to be released and checking the proportion of records that are correctly re-identified. Regarding
the techniques used to perform record linkage, we have presented a basic approach (based on
matching the value of the common attributes) and several more elaborated approaches: threshold-
based record linkage, rule-based record linkage, and probabilistic record linkage. In addition to
the references given in the chapter, a survey on record linkage can be found in [102].
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C H A P T E R 5

e k-Anonymity Privacy
Model

k-anonymity is a popular privacymodel formicrodata releases. It seeks to prevent re-identification
of records based on a predefined set of (quasi-identifier) attributes, thereby preserving the
anonymity of the respondents in the data set. Although the privacy guarantees offered by k-
anonymity are limited (i.e., it does not protect against attribute disclosure), its simplicity has
made it quite popular. It is sometimes seen as offering a minimal requirement for disclosure risk
limitation that is later complemented with protection against attribute disclosure.

5.1 INSUFFICIENCYOFDATADE-IDENTIFICATION
Data de-identification, that is, removal of the explicit identifiers from records in the data set,
is a necessary step to protect the anonymity of the respondents in a microdata release. How-
ever, mere de-identification is not sufficient to guarantee anonymity. e released data often
contain attributes (such as age, sex, ZIP code, etc.) whose combination makes a record unique
and, thus, can lead to its re-identification (successful attribution of an identity to the record).is
re-identification is done by linking the attributes in the released data set to an externally available
data set containing identifiers.

A clarifying analysis of the potential impact of demographic attributes on the anonymity
of individuals is presented in [35]. Based on the U.S. 2000 census, [35] analyzes the anonymity of
individuals based on three demographic attributes: date of birth, sex, and location. e following
table shows the percentage of individuals that can be uniquely re-identified according to the level
of detail of the date of birth and the location.

Birth date 5-digit ZIP County
Year 0.2% 0.0%

Year and month 4.2% 0.2%
Year, month, and day 63.3% 14.8%

e amount of externally available information together with the increasing amounts of
computational power facilitate conducting such re-identifications. In fact, several well-known
cases of disclosure have occurred that corroborate this.
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..

eGroup Insurance Commission Case
eGroup Insurance Commission (GIC) is in charge of buying health care insurance

for Massachusetts state employees. In the development of this task the GIC collected in
each encounter, among other attributes, the ZIP code, birth date, sex, visit date, diagnosis,
procedure, medication, and total charge. Because of the lack of direct identifiers among these
attributes, the data were believed to be anonymous and released to researchers and to the
industry. On the other hand, the voter registration list for Cambridge (Massachusetts) is
accessible at a small fee. Among other attributes, it contains the ZIP code, birth date, sex,
name, and address.

e non-de-identified data in the voter registration list can be linked to the medical
information by using the attributes they share: ZIP code, birth date, and sex. In this way,
an identity can be attributed to some of the records in the medical data set. is approach
was used to re-identify medical records belonging to William Weld, a former governor of
Massachusetts [100].

..

eAOLCase
In their interaction with web search engines, users may reveal confidential informa-

tion. All the information gathered from a user is used by the web search engine to build an
individualized profile of her. is profile is not only used by the web search engine to refine
forthcoming searches but also to perform targeted advertising or even to sell profiles to third
parties.

In 2006 AOL, instead of keeping the collected data for internal use, released a search
log containing over 20 million searches performed by 657,426 users. In an attempt to pre-
serve the privacy of the individuals in the data set, AOL replaced the names of the users
with numbers. However, two reporters from theNew York Times, Michael Barbaro and Tom
Zeller [7], showed how easily a number can be tracked down to a real identity.

User number 4,417,749 had conducted several hundreds of queries on several topics
such as “60 single men,” “dog that urinates on everything,” “landscapers in Lilburn,” and
several people with the last name “Arnold.” e New York Times reporters were able to track
down these queries toelma Arnold. When interviewed by the reporterselma said: “My
goodness, it’s my whole personal life. I had no idea that somebody was looking over my
shoulder.”

AOL removed the access to the released search log but copies of it still circulate.
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5.2 THE k-ANONYMITYMODEL
k-anonymity [79, 80] seeks to guarantee a minimum level of anonymity for the records in a data
set. k-anonymity assumes that the set of attributes that an intruder can use to re-identify a record
are known, andmakes each record indistinguishable with regard to these attributes within a group
of k records.

A quasi-identifier is a set of attributes whose combination of values can lead to record re-
identification and, hence, its release must be controlled. Recall that, when describing microdata
sets in Section 2.2, we used the term “quasi-identifier attribute” to refer to attributes that can be
used in record re-identification. ese notions are related but are not equivalent. e attributes
that conform a quasi-identifier are quasi-identifier attributes, but a quasi-identifier attribute alone
does not need to be a quasi-identifier. Let X be a data set with attributes X1; : : : ; Xm. Let us use
QIX to refer to the set of quasi-identifiers associated with X .

Whether a combination of attributes should be considered to be a quasi-identifier depends
on the available external information with identifiers. e set of quasi-identifiers usually encom-
passes all the combinations of attributes that the data releaser reasonably considers to be publicly
available in a non-de-identified data set. However, unless each combination of attributes is de-
fined to be a quasi-identifier, it would be difficult for the data anonymizer to argue that no other
combination of attributes could be used for record re-identification. Some intruders may be in
possession of confidential information or data that were not public at the time of anonymization
and could be made publicly available later.

To prevent re-identification of records based on a quasi-identifier, k-anonymity requires
each combination of values of the quasi-identifier attributes to be shared by k or more records.

Definition 5.1 k-anonymity Let X be a data set with attributes X1; : : : ; Xm. Let QI 2 QIX

be a quasi-identifier. X is said to be k-anonymous if each combination of values of the attributes
in QI that appears in X is shared by k or more records. Although we have defined QIX to be the
set of all quasi-identifiers of X , the notion of k-anonymity is restricted to a single quasi-identifier
QI 2 QIX . e usual assumption is that several k-anonymous versions of X can be released
to different target recipients. Each target recipient r is assumed to have a single quasi-identifier
QIr 2 QIX that is used for the generation of the k-anonymous data for r . Be aware, however, that
if any recipient has access to the k-anonymous data set tailored for another recipient, disclosure
may happen. To generate a k-anonymous data set that offers protection against re-identification
based on either of the quasi-identifiers QI1; : : : ; QIs 2 QIX the union quasi-identifier QI1 [

: : : [QIs must be considered.

Definition 5.2 Equivalence class e equivalence class of a record x 2 X for a given quasi-
identifier in QI 2 QIX is the set of records in X sharing with x the values for all the attributes
in QI. Using the notion of equivalence class, the definition of k-anonymity can be rephrased as
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follows: a data set is k-anonymous if and only if the equivalence class of any record has k or more
records.

To illustrate the concepts introduced until now and to help in further developing k-
anonymity we introduce a sample data set containing medical data. Table 5.1 shows the sam-
ple medical data set containing one identifying attribute (SS number), two quasi-identifier at-
tributes (Age and ZIP code) and one confidential attribute (Condition). Table 5.2 shows a pos-
sible anonymized version of the data set satisfying 4-anonymity. e identifier attribute has been
removed, because it allows direct re-identification of each record. e amount of information in
the quasi-identifiers has been reduced to make them less identifying. Each combination of values
of quasi-identifiers is now shared by at least four records. To reduce the information in the quasi-
identifiers we have used generalization. Essentially, we have replaced each of the original values
by ranges.

Table 5.1: Sample medical data set with identifier, quasi-identifier, and confidential attributes

Identifier Quasi-identifiers Confidential
SSNumber Age ZIP code Condition

1 1234-12-1234 21 23058 Heart Disease
2 2345-23-2345 24 23059 Heart Disease
3 3456-34-3456 26 23060 Viral Infection
4 4567-45-4567 27 23061 Viral Infection
5 5678-56-5678 43 23058 Kidney Stone
6 6789-67-6789 43 23059 Heart Disease
7 7890-78-7890 47 23060 Viral Infection
8 8901-89-8901 49 23061 Viral Infection
9 9012-90-9012 32 23058 Kidney Stone
10 0123-12-0123 34 23059 Kidney Stone
11 4321-43-4321 35 23060 AIDS
12 5432-54-5432 38 23061 AIDS

k-anonymity, like other privacy models, states the conditions that the released data must
satisfy for disclosure risk to be under control. However, it does not specify the method that must
be used to attain such conditions. us, the 4-anonymous data set in Table 5.2 could have been
generated using methods other than generalization. Of course, the resulting 4-anonymous data
set would have been different. Two dominant approaches exist to generate k-anonymous data
sets: the first one is based on generalization and suppression, and the second one is based on
(multivariate) microaggregation.
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Table 5.2: 4-anonymous medical data generated by generalization (global recoding)

Identifier Quasi-identifiers Confidential
SSNumber Age ZIP code Condition

1 * [20-30] 230** Heart Disease
2 * [20-30] 230** Heart Disease
3 * [20-30] 230** Viral Infection
4 * [20-30] 230** Viral Infection
5 * [40-50] 230** Kidney Stone
6 * [40-50] 230** Heart Disease
7 * [40-50] 230** Viral Infection
8 * [40-50] 230** Viral Infection
9 * [30-40] 230** Kidney Stone
10 * [30-40] 230** Kidney Stone
11 * [30-40] 230** AIDS
12 * [30-40] 230** AIDS

5.3 GENERALIZATIONANDSUPPRESSIONBASED
k-ANONYMITY

e domain of an attribute specifies the values that the attribute can take. In order to attain k-
anonymity, generalization reduces the amount of information in the attribute values. is is done
by mapping the original values of the attributes to generalized versions. Usually several general-
izations are possible for each attribute.ese generalizations are related and form a generalization
hierarchy.

In one-dimensional generalization, each attribute is generalized independently. To that
end, we assume that a domain generalization hierarchy is available for each attribute. Figure 5.1
shows a possible generalization hierarchy for theAge attribute: inAge0 the original, ungeneralized
values of the attribute are present, in Age1 the original values have been replaced by intervals of
size 5, in Age2 the intervals in Age3 are grouped to form intervals of size 10, and in Age3 there
is a single interval that contains all the original values. Figure 5.2 shows a possible generalization
hierarchy for ZIP code: in Zip0 the original, ungeneralized values of the attribute are present, in
Zip1 the last figure of the ZIP code is left undetermined, and in Zip2 the last two figures of the
ZIP code are left undetermined.We observe in both cases that the various generalizations of each
attribute are related according to a generalization relationship: Age3 is more general than Age2,
which is in turn more general than Age1, which in turn is more general than Age0.

Definition 5.3 Attribute generalization relationship Consider an attribute X i of the data set
X . Let G1 and G2 be two possible generalizations of the domain of the attribute X i . We denote
the attribute generalization relationship �X i . We use the notation G1 �X i G2 to denote that
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the G2 is either identical or a generalization of G1. e generalization relationship �X i defines
a partial order between the generalizations of X i . By following the usual approach to attribute
generalization for k-anonymity, we assume that �X i is a total order. Although this requirement
would not be necessary, it will facilitate the exposition. With a total order, for each attribute X i

we have a linear sequence of generalizations of the form Gi
0 �X i� Gi

1 �X i : : : �X i Gi
hi

where
Gi

0 is the domain of the original attribute and Gi
hi

is the generalization into a single value.

Figure 5.1: Generalization hierarchy for the Age attribute. At the bottom, Age0, represents the orig-
inal (non-generalized) domain of the attribute. e first generalization, Age1, replaces the original
values by ranges of length 5. e second generalization, Age2, considers ranges of ages of size 10. e
last generalization, Age3, groups all age values in a single category.

Figure 5.2: Generalization hierarchy for the ZIP code attribute. At the bottom, Zip0, represents the
original (ungeneralized) domain of the attribute. e first generalization, Zip1, groups ZIP codes
whose first four figures match. e second generalization, Zip2, groups all ZIP codes in the data set.
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Once the generalization hierarchies have been defined for each individual attribute, we
combine them to get a record generalization (that is, we select a generalization for each attribute).

Definition 5.4 Record generalization Let X be a data set with attributes X1; : : : ; Xm. A
record generalization is a tuple .G1; : : : ; Gm/ where Gi is a generalization of the domain of at-
tribute X i . We will implicitly assume that, for a given data set, record generalizations are per-
formed on the projection on the quasi-identifiers. Like in the case of a single attribute, a partial
order can be defined between record generalizations.

Definition 5.5 Record generalization relationship Let X be a data set with attributes
X1; : : : ; Xm. Let .G1; : : : ; Gm/ and .G0

1; : : : ; G0
m/ be two record generalizations. We denote the

record generalization relationship by�X and we use the notation .G1; : : : ; Gm/ �X .G0
1; : : : ; G0

m/

to indicate that G0
i is either identical or a generalization of Gi , for each i D 1; : : : ; m.

e goal is to select a record generalization so that k-anonymity is satisfied. In the gener-
ation of a k-anonymous data set, only the quasi-identifier attributes are generalized; we will re-
strict the generalizations to them. ere are potentially many different generalizations that yield
k-anonymity. Because the level of generalization is directly related to the amount of information
loss, the goal is to find the minimal generalization.

Definition 5.6 Minimal record generalization for k-anonymity Let X be a data set with at-
tributes X1; : : : ; Xm. Let QI be the quasi-identifier attributes and let G be a record generaliza-
tion over QI. We say that G is a minimal record generalization if it satisfies k-anonymity and,
for any other record generalization G0 over QI with G0 �QI G, we have that G0 does not satisfy
k-anonymity. In other words, according to �QI , G is minimal among the record generalizations
over QI that satisfy k-anonymity.

Figure 5.3 shows the possible record generalizations for Age and ZIP according to the
previously given generalization hierarchies for the individual attributes.e valid combinations of
attribute generalizations to attain 2-anonymity are: .Age3; Zip2/, .Age3; Zip1/, .Age3; Zip0/,
.Age2; Zip2/, .Age2; Zip1/, .Age1; Zip2/, .Age1; Zip1/. ese are marked with a rectangle in
the figure. Among the attribute generalizations that satisfy 2-anonymity the minimal ones are:
.Age3; Zip0/ and .Age1; Zip1/.

Not all minimal generalizations are equally good. For example, if in Figure 5.3 we are in-
terested in preserving the ZIP code information as much as possible, the generalization selected
should be .Age3; Zip0/. On the contrary, if we are interested in minimizing the total number
of generalization steps, we should select .Age1; Zip1/: .Age1; Zip1/ generalizes each attribute
once, thus making a total of two generalizations steps, while .Age3; Zip0/ involves three gener-
alization steps.

Coming up with the minimal record generalization that is optimal according to some crite-
rion requires finding the set of all minimal generalizations and searching the optimal one among
them. Given the large number of record generalizations (.h1C:::ChjQI j/Š=h1Š:::hjQI jŠ, where hi is the
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Figure 5.3: Possible combinations of domain generalizations of attributes Age and ZIP code. e
rectangles mark the combinations of generalizations that satisfy 2-anonymity.

number of generalizations for attributeQI i ), finding the set of minimal generalizations can be in-
tractable and may require strategies to reduce the search space. We review next some well-known
algorithms for this purpose.

Minimizing the height of the generalization
is was the original method to generate a k-anonymous data set [79]. It finds a minimal gener-
alization that minimizes the number of generalization steps (height of the generalization).

Definition 5.7 Height of a generalization Let X be a data set with attributes X1; : : : ; Xm. Let
Gi

0 �X i� Gi
1 �X i : : : �X i Gi

hi
be the sequence of generalizations for attribute X i . We define the

height of Gi
j as

height.Gi
j / D j:
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e height of a record generalization .G1
i1

; : : : ; Gm
im

/ is defined as

height..G1
i1

; : : : ; Gm
im

// D i1 C : : :C im:

e height of a record generalization is between 0 and h1 C : : :C hm. e proposed al-
gorithm is based on a binary search over the height of the record generalizations. If, for a given
height h, there is no record generalization satisfying k-anonymity, then there cannot be a record
generalization at a lower height that satisfies k-anonymity. us, if no record generalization sat-
isfying k-anonymity is found at height h, there is no need to check the record generalizations
at height lower than h. On the contrary, if a record generalization that satisfies k-anonymity is
found at height h, then the record generalizations at height higher than h are not minimal and
can be discarded. See Algorithm 2 for a formal description of the process.

e Incognito algorithm
Algorithm 2 was effective in finding a solution because the optimality criterion (minimizing the
height of the generalization) was compatible with a binary search based on the height (in the sense
that if, for a given height there is no record generalization that gives k-anonymity, then there is
no need to check record generalizations with a lower height). However, this does not need to be
the case for an arbitrary optimality criterion. In such case a naive bottom-up breadth-first search
algorithm may need to be used.

e Incognito algorithm follows the bottom-up breadth-first approach to find the opti-
mal record generalization. To be able to limit the search space, the Incognito algorithm uses the
following properties about generalizations and k-anonymity.

Proposition 5.8 Generalization property Let X be a data set, let QI be the quasi-identifier
attributes of X , and let G1 and G2 be record generalizations over QI such that G1 �QI G2. If G1

gives k-anonymity to X , then G2 also gives k-anonymity to X .

Proposition 5.9 Rollup property Let X be a data set, let QI be the quasi-identifier attributes
of X , and let G1 and G2 be record generalizations over QI such that G1 �QI G2. e frequency
count of a given equivalence class C in X with respect to G2 can be computed as the sum of the
frequency counts of the equivalence classes in X with respect to G1 that generalize to C.

Proposition 5.10 Subset property Let X be a data set, let QI be the quasi-identifier attributes
of X , and let Q � QI be a subset of the quasi-identifiers. If X is k-anonymous with respect to
Q, then it is also k-anonymous with respect to any subset of attributes of Q.

e subset property says that for a given generalization to satisfy k-anonymity, all the gen-
eralizations that result by removing one of the attributes must also satisfy k-anonymity. Based
on this, the Incognito algorithm starts by searching for single attribute generalizations that give
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Algorithm 2 k-Anonymous record generalization with minimal height
Data: X : original data set

k: anonymity requirement
QI: quasi-identifier attributes
.Gi

j /j : generalization hierarchy for attribute QI i , for all i D 1; : : : ; jQI j

Result: Set of clusters satisfying k-anonymity and t-closeness

low WD 0; high WD h1 C : : :C hjQI j

sol D .G1
h1

; : : : ; G
jQI j

hjQI j
/

while low < high do
mid WD

j
lowChigh

2

k
generalizations WD f.G1

ii
; : : : ; G

jQI j

ijQI j
/jheight..G1

ii
; : : : ; G

jQI j

ijQI j
// D midg

found WDfalse
while generalizations ¤ ; and found ¤true do

Extract .G1; : : : ; GjQI j/ from generalizations
if .G1; : : : ; GjQI j/ satisfies k-anonymity then

sol D .G1; : : : ; GjQI j/

found WDtrue
end if

end while
if found Dtrue then

high WD mid

else
low WD mid C 1

end if
end while
return sol

k-anonymity and then iteratively increases the number of attributes in the generalization by one.
When searching for the generalizations of size i that satisfy k-anonymity, the Incognito algo-
rithm makes use of the generalization property to reduce the search space: once a generalization
G that satisfies k-anonymity is found, all further generalizations of G also satisfy k-anonymity.
To reduce the cost of checking whether the frequency counts associated with a generalization
satisfy k-anonymity, the Incognito algorithm makes use of the rollup property and computes the
frequency counts associated to a generalization in terms of the already computed frequency counts
for the previous generalizations. Algorithm 3 shows the formal description of the Incognito al-
gorithm.
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Algorithm 3 Incognito algorithm for k-anonymity
Data: X : original data set

k: anonymity requirement
QI: quasi-identifier attributes
.Gi

j /j : generalization hierarchy for attribute QI i , for all i D 1; : : : ; jQI j

Result: Set of record generalizations that yield k-anonymity

C1 WD{Nodes in the generalization hierarchies of the attributes in QI}
E1 WD{Edges in the generalization hierarchies of the attributes in QI}
queue WDempty queue
for i WD 1; : : : ; jQI j do

//Si will contain all the generalizations with i attributes that are k-anonymous
Si WD C1

roots WDnodes of Ci with no incoming edge
Insert roots into queue and keep it sorted by height
while queue ¤ ; do

node WDextract item from queue
if node is not tagged then

if node 2 roots then
f requencies WDcompute frequencies of T with respect to node

else
f requencies WDcompute frequencies of T with respect to node us-

ing parent’s frequency
end if

end if
Check for k-anonymity of X with respect to node using frequencies
if X is k-anonymous with respect to node then

tag all direct generalizations of node
else

Delete node from Si

Insert direct generalizations of node into queue and keep the order by height
end if

end while
//Generate the graph of all possible k-anonymous generalizations with i C 1 attributes
CiC1; EiC1 WDGenerate graph from Si and Ei

end for
return Sn
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5.4 MICROAGGREGATION-BASED k-ANONYMITY
Satisfying k-anonymity with minimal data modification by using generalization (recoding) and
local suppression has been shown to be NP-hard. In fact, even how to optimally combine gen-
eralization and local suppression is an open issue. Unless carefully combined, those two non-
perturbative methods may cause a substantial loss of data utility. Furthermore, the use of general-
ization to ensure k-anonymity poses several practical problems. One of them is the computational
cost of finding the optimal recoding. is is partly related to the exponential number of general-
izations that can be defined for each attribute.

Lemma 5.11 For an attribute with c categories, there are 2c � c � 1 possible generalizations.

Proof. Generalization consists of replacing a subset of categories by a new general category. us
the number of generalizations equals the number of subsets of categories containing more than
one category. ere are 2c subsets of categories, of which c consist of a single category and one is
the empty subset. us there are 2c � c � 1 subsets containing more than one category. �

Another problem is determining the subset of appropriate generalizations, i.e., which are
the new categories and which is the subset of old categories that can be recoded into each of such
new categories. Not all recoding methods are appropriate because the semantics of the categories
and the intended data uses must be taken into account. For example, when generalizing ZIP
codes, recoding 08201 and 08205 into 0820* makes sense as long as 0820* is meaningful as a
location (e.g., corresponds to a city, a county, or another geographical area). For the same reason,
it is probably not meaningful to recode 08201 and 05201 into 0*201 because the set of regions
represented by 0*201 might lack any geographical significance. e need for significance makes
automatic generation of recodings a thorny issue.

In comparison, microaggregation stands out as a seamless approach to satisfy k-anonymity.
e use of multivariate microaggregation as a masking technique to attain k-anonymity was pro-
posed in [26] (see Section 3.2 for the detailed algorithm). ere, microaggregation is performed
on the projection on quasi-identifier attributes to generate a k-anonymous data set. e adap-
tation of microaggregation for k-anonymity is straightforward: by applying the multivariate mi-
croaggregation algorithm (with minimum cluster size k) to the quasi-identifiers, one generates
groups of k records that share the quasi-identifier values (the aggregation step replaces the orig-
inal quasi-identifiers by the cluster centroid). In microaggregation one seeks to maximize the
homogeneity of records within a cluster, which is beneficial for the utility of the resultant k-
anonymous data set. Even if optimal multivariate microaggregation is also NP-hard [70]—like
generalization/suppression—near-optimal heuristics exist, unlike for generalization/suppression.

Microaggregation has several advantages over generalization/recoding for k-anonymity
that are mostly related to data utility preservation:

• Global recoding may recode some records that do not need it, hence causing extra infor-
mation loss. On the other hand, local recoding makes data analysis more complex, as values
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corresponding to various different levels of generalization may co-exist in the anonymized
data. Microaggregation is free from either drawback.

• Data generalization usually results in a significant loss of granularity, because input values
can only be replaced by a reduced set of generalizations, which are more constrained as
one moves up in the hierarchy. Microaggregation, on the other hand, does not reduce the
granularity of values, because they are replaced by numerical or categorical averages.

• If outliers are present in the input data, the need to generalize them results in very coarse
generalizations and, thus, in a high loss of information. For microaggregation, the influence
of an outlier in the calculation of averages/centroids is restricted to the outlier’s equivalence
class and hence is less noticeable.

• For numerical attributes, generalization discretizes input numbers to numerical ranges and
thereby changes the nature of data from continuous to discrete. In contrast, microaggrega-
tion maintains the continuous nature of numbers.

In [79, 80] it was proposed to combine local suppression with recoding to reduce the amount of
recoding. Local suppression has several drawbacks:

• It is not known how to optimally combine generalization and local suppression.

• ere is no agreement in the literature on how suppression should be performed: one can
suppress at the record level (entire record suppressed), or suppress particular attributes in
some records; furthermore, suppression can be done by either blanking a value or replacing
it by a neutral value (i.e., some kind of average).

• Last but not least, and no matter how suppression is performed, it complicates data analysis
(users need to resort to software dealing with censored data).

5.5 PROBABILISTIC k-ANONYMITY
k-anonymity guarantees that, for any combination of values of quasi-identifier attributes in the
published microdata set Y , there are at least k records sharing that combination of values. Given
an individual in an external non-anonymous data set, we cannot link her back to a specific record
in Y but to an equivalence class. us, the probability of performing the right re-identification is
at most 1=k.

e essence of the anonymity guarantee provided by k-anonymity is to limit the probability
of record re-identification to 1=k. Having at least k records that share the same values for the
quasi-identifier attributes is one way to limit the probability of re-identification to 1=k. However,
there may be other approaches to limit this probability.
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Probabilistic k-anonymity [90, 95] is a relaxation of k-anonymity that just focuses on of-
fering a probability 1=k of record re-identification.

Definition 5.12 Probabilistic k-anonymity Let X be a data set with attributes X1; : : : ; Xm.
Let QI 2 QIX be a quasi-identifier. X is said to satisfy probabilistic k-anonymity with respect
to QI if the probability of re-identifying a record based on the QI attributes is, at most, 1=k.

e main advantage of probabilistic k-anonymity over k-anonymity is that the former does
not specify the approach to attain the required limit in the probability of record re-identification.
By widening the range of usable methods, one can hope to find a method incurring less informa-
tion loss.

Proposition 5.13 Let X be a data set with attributes X1; : : : ; Xm. Let QI 2 QIX be a quasi-
identifier. IfX satisfies k-anonymity with respect to QI, then it satisfies probabilistic k-anonymity
with respect to QI. On the contrary, probabilistic k-anonymity with respect to QI does not imply
k-anonymity with respect to QI.

Because probabilistic k-anonymity is a relaxation of k-anonymity, in general k-anonymity
implies probabilistic k-anonymity, but the reverse does not hold. In this way, the set of methods
available to attain probabilistic k-anonymity is a superset of the ones that yield k-anonymity;
hence, it is reasonable to expect that probabilistic k-anonymity can be satisfied with less utility
damage than k-anonymity.

An interesting manner of attaining probabilistic k-anonymity is proposed in [107]. is
method, called Anatomy, simply partitions the original data set in groups of k or more records
and then outputs two separate tables for release: one contains the QI attributes together with the
group identifier, and the other contains the sensitive attributes together with the group identifier.
Because the relation between the QI attributes and the sensitive attributes goes through the group
identifiers, the probability of doing the right matching (and thus of re-identifying the confidential
attributes) is, at most, 1=k. e advantage of the Anatomy approach over methods used to attain
k-anonymity is that the original values of the QI attributes are preserved and, thus, there is less
information loss.

In [90, 95], it is shown that conducting an individual-ranking microaggregation for each
confidential attribute leads to a probabilistically k-anonymous data set. As stated in Section 3.2,
using individual-rankingmicroaggregation (instead of themultivariate microaggregation required
by k-anonymity) significantly improves the utility of the anonymized data. is becomes more
noticeable as the number of quasi-identifiers grows: such curse of dimensionality [6] has only a
marginal effect when using univariate microaggregation.

5.6 SUMMARY
is chapter has reviewed the k-anonymity, a privacy model for microdata releases that seeks to
prevent record re-identification by making each record indistinguishable within as group of k (or
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more) records as far as the quasi-identifiers are concerned.We have seen that twomain approaches
to generate k-anonymous data sets are used in practice: the first one is based on generalization
and suppression, and the second one on microaggregation. We have also introduced probabilistic
k-anonymity, a relaxation of k-anonymity that seeks to preserve the anonymity guarantees of k-
anonymity but with less information loss.e next chapter details two extensions of k-anonymity
that focus on protecting against attribute disclosure: l-diversity and t-closeness.
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C H A P T E R 6

Beyond k-Anonymity:
l-Diversity and t-Closeness

emain advantage of k-anonymity is that it provides an intuitive notion of disclosure risk limi-
tation. e principle that underlies k-anonymity is that an individual’s privacy must be protected
if the corresponding record is hidden within a group of k records. However, this principle fails to
provide sufficient protection when the records in the k-anonymous group have a similar value for
the confidential attribute. In other words, k-anonymity provides protection against identity dis-
closure but that is not enough to prevent attribute disclosure when the values of the confidential
attribute are similar across records.

Two simple attacks have been proposed in the literature that exploit the lack of variabil-
ity in the confidential attribute. In the homogeneity attack, all the records in a k-anonymous
group share the same value for the confidential attribute; thus, k-anonymity fails to provide any
protection against attribute disclosure. In the background knowledge attack, the variability of the
confidential attribute in the k-anonymous group is small and the intruder is in possession of some
background information that allows her to further restrict the feasible values of the confidential
attribute for the target individual.

6.1 l-DIVERSITY
In an attempt to overcome the issues that k-anonymity presents against attribute disclosure, [54]
proposes the notion of l-diversity. e goal is to require a minimum level of diversity for the
confidential attribute in each of the k-anonymous groups of records (i.e., equivalence classes).

Definition 6.1 l-diversity [54] An equivalence class is said to satisfy l-diversity if there are at
least l “well-represented” values for the sensitive attribute. A data set is said to satisfy l-diversity
if every equivalence class in it satisfies l-diversity.

e definition of l-diversity is vague in the sense that it does not specify the meaning of
“well-represented” values. Some possible interpretations are:

1. Distinct l-diversity. is is the simplest notion of l-diversity. It only requires each equiv-
alence class to have at least l different values for the sensitive attribute. is is indeed a
weak instantiation of the l-diversity principle as the frequency of the values of the sensitive
attribute could be significantly different.
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2. Entropy l-diversity. e entropy of an equivalence class S is

H.S/ D �
X
s2S

pS .s/ log.pS .s//

where pS .s/ is the fraction of records in the equivalence class S with sensitive value equal
to s. A table is said to satisfy entropy l-diversity if, for each equivalence class S , we have

H.S/ � log l:

is instantiation of l-diversity may be too restrictive if some values of the sensitive attribute
are very common because, in such cases, the entropy of equivalence classes tends to be small.

3. Recursive .c; l/-diversity.is instantiation seeks to upper-bound the frequency of themost
common value of the sensitive attribute and lower-bound the frequency of the least common
values. Assuming that r1; : : : ; rm is the sequence of frequencies of the values of the sensitive
attribute in an equivalence class in descending order, we say the the class satisfies .c; l/-
diversity if

r1 < c.rl C rlC1 C : : :C rm/:

6.2 t-CLOSENESS
l-diversity tries to mitigate the risk of attribute disclosure by requiring a minimal level of vari-
ability in the sensitive attribute in each equivalence class. However, the formulation of l-diversity
is not completely satisfactory as it is vulnerable to skewness and and similarity attacks [50].

• Skewness attack. To give the least amount of information about the sensitive attribute on a
particular individual, l-diversity seeks to make the frequency of appearance of each these
values similar in each equivalence class. However, when the distribution of the sensitive
attribute in the overall data set is strongly skewed, satisfying l-diversity may in fact be
counter-productive as far as disclosure risk is concerned. Consider the case of a medical
data set in which the sensitive attribute records the presence or absence of a given disease.
Assume that 99% of the individuals are negative. Releasing an equivalence class with 50%
positives and 50% negatives is optimal in terms of l-diversity but it is indeed potentially
disclosive. After the release of such data, each of the individuals in the equivalence class is
seen as having a 50% probability of being positive in the listed disease, while before the data
release the probability of it being positive was only a 1%.

• Similarity attack. l-diversity seeks to guarantee that each equivalence class contains different
values and, depending on the instantiation, that none of these values dominates in terms
of frequency of appearance. However, none of the previous properties of the equivalence
classes provides meaningful disclosure risk limitation guarantees in presence of different
but semantically close values of the sensitive attribute.
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To deal with the above two issues, t-closeness proposes to use a relative measure for the variabil-
ity of the values in the sensitive attribute, rather than an absolute measure that lacks semantic
meaning. To that end, t-closeness seeks to limit the information gain of an observer from having
access to the released data.

It is assumed that, before the data release, the observer has some prior knowledge about
the distribution of the confidential attribute in the overall data set. Let us call P this prior distri-
bution. Usually P is taken to be the marginal distribution of the sensitive attribute in the overall
data set. e use of such prior knowledge can be justified by observing that, because the marginal
distribution is not related to any specific individual, releasing it should be safe. Of course, when
one of the individuals in the data set is known to have a distinctive value (e.g., in a given economic
sector the largest firm in the sector could be easily identifiable by the value of the sensitive at-
tribute) the release of the marginal distribution is indeed disclosive. In such case, a pre-processing
step is needed on the confidential attribute, for instance, using top- or bottom-coding.

After the data release, the beliefs of the observer regarding the value of the confidential at-
tribute of a specific individual change from P (the marginal distribution of the sensitive attribute)
to Q (the distribution of the sensitive attribute in the corresponding equivalence class).

To limit the information gain that the observer obtains from having access to the released
data, t-closeness limits the distance between between P and Q. Intuitively, when P and Q are
equal, the released data do not reveal additional information about the sensitive attribute of any
individual. e closer P and Q are, the less information the released data set provides about
specific individuals.

Definition 6.2 t-Closeness [50] An equivalence class is said to satisfy t-closeness if the dis-
tance between the distribution of a sensitive attribute in this class and the distribution of the at-
tribute in the whole data set is no more than a threshold t . A data set is said to satisfy t-closeness
if every equivalence class in it satisfies t-closeness.

e earth mover’s distance
e definition of t-closeness does not prescribe any specific distance between distributions. Yet
the earth mover’s distance (EMD)[78] is the usual distance employed in t-closeness. e main
advantage of EMD is that it is able to capture the semantic distance between values. EMD.P; Q/

measures the cost of transforming distribution P into distribution Q by moving probability mass.
EMD is computed as the minimum transportation cost from the bins of P to the bins of Q, so
it depends on how much mass is moved and how far it is moved (this can be a function of the
semantic distance between values).

..

eEMDdistance
Consider a set of values fv1; : : : ; vrg and two probability distributions P D

.p1; : : : ; pr/ and Q D .q1; : : : ; qr/, where pi and qi are, respectively, the probabilities that
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..

P and Q assign to vi . en EMD.P; Q/ is computed as the minimum transportation cost
from the bins of P to the bins of Q, so it depends on how much mass is moved and how
far it is moved. If we denote by dij the distance between values vi and vj and by fij the mass
moved between vi and vj , EMD.P; Q/ can be computed as:

EMD.P; Q/ D min
fij

rX
iD1

rX
j D1

dijfij

subject to:

fij � 0 1 � i; j � r

pi �
Pr

j D1 fij C
Pr

j D1 fji D qi 1 � i � mPm
iD1

Pm
j D1 fij D

Pm
iD1 pi D

Pm
iD1 qi D 1:

Lemma 6.3 If 0 � dij � 1 for all i; j then 0 � EMD.P; Q/ � 1.

Lemma 6.4 Let E1 and E2 be two equivalence classes. Let Q1 and Q2 be the distribution
of the sensitive attribute in E1 and E2, respectively. en

EMD.P; Q/ �
jE1j

jE1j C jE2j
EMD.P; Q1/C

jE2j

jE1j C jE2j
EMD.P; Q2/:

ComputingEMDfor numerical attributes.e first step in computing EMD is to define
how the ground distance is measured. For a numerical attribute, the natural order can be used to
measure such distance.

Definition 6.5 Ordered distance Let fv1; : : : ; vrg be set of values. e ordered distance is

ordered_distance.vi ; vj / D
jrank.vi / � rank.vj /j

r � 1
:

Let P D .p1; : : : ; pr/ and Q D .q1; : : : ; qr/ be probability distributions over fv1; : : : ; vrg.
e EMD between P and Q can be computed as

EMD.P; Q/ D
1

r � 1

rX
iD1

ˇ̌̌̌
ˇ̌ iX
j D1

.pi � qi /

ˇ̌̌̌
ˇ̌ :

Computing EMD for categorical attributes. While for a numerical attribute there was a
clear ground distance, for categorical attributes several distances are proposed according to the
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type of categorical attribute under consideration. Ordinal categorical attributes can be treated
as numerical attributes. e ground distance is computed using the ordered_distance and the
EMD.P; Q/ is computed according to the previous formula. For nominal categorical attributes,
there is no relation between attribute values. In this case it is better to set the ground dis-
tance between any two different values of the attribute equal to 1. If P D .p1; : : : ; pr/ and
Q D .q1; : : : ; qr/ are probability distributions over the values of the nominal categorical attribute,
then EMD is computed as

EMD.P; Q/ D
1

2

rX
iD1

jpi � qi j :

For hierarchical nominal attributes, the hierarchical relation between attribute values can be used
to compute the ground distance. See [50] for more details on the computation of EMD on these
types of categorical attributes and [97] for a specific application.

Generalization-based t-closeness
e general approach to attain t-closeness is to modify the algorithm used to satisfy k-anonymity
so that the additional constraints of t-closeness are taken into account.

For t-closeness withEMD, the following properties guarantee that the Incognito algorithm
for k-anonymity can be adapted to attain t-closeness.

Lemma 6.6 Generalization Property Let X be a data set. Let Y be a generalization of X that
satisfies t-closeness. If Z is a further generalization of Y , then Z satisfies t-closeness (with respect
to X).

Lemma 6.7 Subset Property Let X be a data set. Let Y be a data set satisfying t-closeness
with respect to X . If Z is a data set obtained from Y by removing some attributes, then Z also
satisfies t-closeness with respect to X .

6.3 SUMMARY
is chapter has introduced the l-diversity and t-closeness privacy models. ese are refinements
of the k-anonymity privacy model that seek to offer guarantees against attribute disclosure. l-
diversity requires each of the equivalence classes to have diverse enough values for the confidential
attribute. However, we have seen that l-diversity still has some problems. For instance, when the
data are too skewed or when there are different values of the confidential attribute with similar
meaning, l-diversity may not offer enough protection against attribute disclosure. t-closeness
seeks to address such issues by introducing a relative measure of attribute disclosure risk: the
distribution of the confidential attribute within each equivalence class should be similar to the
distribution of the confidential attribute in the overall data set. In the next chapter, we detail how
t-closeness can be enforced with k-anonymous microaggregation.
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C H A P T E R 7

t-Closenessrough
Microaggregation

Similar to k-anonymity, the commonest way to attain t-closeness is to use generalization and
suppression. In fact, the algorithms for k-anonymity based on those principles can be adapted to
yield t-closeness by adding the t-closeness constraint in the search for a feasible minimal gener-
alization: in [50] the Incognito algorithm and in [51] the Mondrian algorithm are respectively
adapted to t-closeness.

On the other hand, as discussed in Section 5.4, microaggregation is a natural alternative
to attain k-anonymity that offers several advantages over generalization and suppression (mostly
related to a better preservation of data utility). When using microaggregation for t-closeness,
one has the additional constraint that the distance between the distribution of the confidential
attribute within each of the clusters generated by microaggregation and the distribution in the
entire data set must be less than t . is makes reaching t-closeness more complex, because we
have to reconcile the possibly conflicting goals of maximizing the within-cluster homogeneity of
the quasi-identifiers and fulfilling the condition on the distance between the distributions of the
confidential attributes. Nevertheless, one can expect significant utility gains w.r.t. generalization
and suppression [98].

In the sequel, three different algorithms to trade off these conflicting goals are detailed [98].
e first algorithm is based on performing microaggregation in the usual way, and then merging
clusters as much as needed to satisfy the t-closeness condition. is first algorithm is simple and
it can be combined with any microaggregation algorithm, yet it may perform poorly regarding
utility because clusters may end up being quite large. e other algorithms modify the microag-
gregation algorithm for it to take t-closeness into account, in an attempt to improve the utility
of the anonymized data set. Two variants are proposed: k-anonymity-first (which generates each
cluster based on the quasi-identifiers and then refines it to satisfy t-closeness) and t-closeness-first
(which generates each cluster based on both quasi-identifier attributes and confidential attributes,
so that it satisfies t-closeness by design from the very beginning).

7.1 STANDARDMICROAGGREGATIONANDMERGING
Generating a t-close data set via generalization is essentially an optimization problem: one must
find a minimal generalization that satisfies t-closeness. A common way to find a solution is to
iteratively generalize one of the attributes (selected according to some quality criterion) until the
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resulting data set satisfies t-closeness. e first method to attain t-closeness via microaggregation
follows a similar approach. We microaggregate and then merge clusters of records in the mi-
croaggregated data set; we use the distance between the quasi-identifiers of the microaggregated
clusters as the quality criterion to select which groups are to be merged (in order to minimize the
information loss of the microaggregation).

Initially, the microaggregation algorithm is run on the quasi-identifier attributes of the
original data set; this step produces a k-anonymous data set. en, clusters of microaggregated
records are merged until t-closeness is satisfied (with EMD as a distance, see Section 6.2). We
iteratively improve the level of t-closeness by: i) selecting the cluster whose confidential attribute
distribution is most different from the confidential attribute distribution in the entire data set
(that is, the cluster farthest from satisfying t-closeness); and ii) merging it with the cluster closest
to it in terms of quasi-identifiers. See Algorithm 4.

Algorithm 4 t-closeness through microaggregation and merging of microaggregated groups of
records
Data: X : original data set

k: minimum cluster size
t : t-closeness level

Result: Set of clusters satisfying k-anonymity and t-closeness

X 0=microaggregation(X , k)
while EMD.X 0; X/ > t do

C = cluster in X 0 with the greatest EMD to X

C 0 = cluster in X 0 closest to C in terms of QIs
X 0 = merge C and C 0 in X 0

end while
return X 0

Note that Algorithm 4 always returns a t-close data set. In the worst case, all clusters are
eventually merged into a single one and EMD becomes zero. e computational cost of Algo-
rithm 4 is the sum of the cost of the initial microaggregation and the cost of merging clusters.
Although optimal multivariate microaggregation is NP-hard, several heuristic approximations ex-
ist with quadratic cost on the number n of records of X (e.g., MDAV [26], V-MDAV [88]). For
themerging part, the fact that computing EMD for numerical data has linear cost turns the merg-
ing quadratic. More precisely, the cost of Algorithm 4 is maxfO.microaggregation/; n2=kg.
If MDAV is used for microaggregation, the cost is O.n2=k/.
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7.2 t-CLOSENESSAWAREMICROAGGREGATION:
k-ANONYMITY-FIRST

Algorithm 4 consists of two clearly defined steps: first microaggregate and then merge clusters
until t-closeness is satisfied. In the microaggregation step any standard microaggregation algo-
rithm can be used because the enforcement of t-closeness takes place only after microaggregation
is complete. As a result, the algorithm is quite clear, but the utility of the anonymized data set
may be far from optimal. If, instead of deferring the enforcement of t-closeness to the second
step, we make the microaggregation algorithm aware of the t-closeness constraints at the time of
cluster formation, the size of the resulting clusters and also information loss can be expected to
be smaller.

Algorithm 5 microaggregates according to the above idea. It initially generates a cluster
of size k based on the quasi-identifier attributes. en the cluster is iteratively refined until t-
closeness is satisfied. In the refinement, the algorithm checks whether t-closeness is satisfied and,
if it is not, it selects the closest record not in the cluster based on the quasi-identifiers and swaps
it with a record in the cluster selected so that the EMD to the distribution of the entire data set
is minimized. Instead of replacing the records already added to a cluster, we could have opted for
adding additional records until t-closeness is satisfied.is latter approach was discarded because
it led to large clusters when the dependence between quasi-identifiers and confidential attributes
is high. In this case, clusters homogeneous in terms of quasi-identifiers tend to be homogeneous
in terms of confidential attributes, so the within-cluster distribution of the confidential attribute
differs from its distribution in the entire data set unless the cluster is (nearly) as big as the entire
data set.

It may happen that the records in the data set are exhausted before t-closeness is satisfied.
is is most likely when the number of remaining unclustered records is small (for instance, when
the last cluster is formed). us, Algorithm 5 alone cannot guarantee that t-closeness is satisfied.
A way to circumvent this shortcoming is to use Algorithm 5 as the microaggregation function in
Algorithm 4. By taking into account t-closeness at the time of cluster formation (as Algorithm 5
does), the number of clustermergers inAlgorithm 4 can be expected to be small and, therefore, the
utility of the resulting anonymized data set can be expected to be reasonably good. Algorithm 5
makes an intensive use of the EMD distance. Due to this and to the cost of computing EMD,
Algorithm 5may be rather slow.More precisely, it has orderO.n3=k/ in the worst case, and order
O.n2=k/ in the best case (when no record swaps are required).

7.3 t-CLOSENESSAWAREMICROAGGREGATION:
t-CLOSENESS-FIRST

Algorithm 5modified themicroaggregation for it to build the clusters in a t-closeness aware man-
ner. e clustering algorithm, however, kept the focus on the quasi-identifiers (records were se-
lected based on the quasi-identifiers) and did not guarantee that every cluster satisfies t-closeness.
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Algorithm 5 k-Anonymity-first t-closeness aware microaggregation algorithm (Continues.)
Function k-Anonymity-first

Data: X : original data set
k: minimum cluster size
t : t-closeness level

Result Set of clusters satisfying k-anonymity and t-closeness Clusters D ;

X 0 D X

while X 0 ¤ ;

xa = average record of X 0

x0 = most distant record from xa in X 0

C = GenerateCluster(x0, X 0, X , k, t)
X 0 D X 0 n C

Clusters D Clusters [ fC g
if X 0 ¤ ;

x1 = most distant record from x0 in X 0

C = GenerateCluster(x1, X 0, X , k, t)
X 0 D X 0 n C

Clusters D Clusters [ fC g
end if

end while
return Clusters

end function

Moreover, it could be computationally costly for large data sets. e algorithm proposed in this
section prioritizes the confidential attribute, thereby making it possible to guarantee that all clus-
ters satisfy t-closeness. We assume in this section that the values of the confidential attribute(s)
can be ranked, that is, be ordered in some way. For numerical or categorical ordinal attributes,
ranking is straightforward. Even for categorical nominal attributes, the ranking assumption is less
restrictive than it appears, because the same distance metrics that are used to microaggregate these
types of attributes can be used to rank them (e.g., the marginality distance in [23, 97] and other
semantic distances applied to data microaggregation in [8, 57]). We start by evaluating some of
the properties of the EMD distance with respect to microaggregation. To minimize EMD be-
tween the distributions of the confidential attribute within a cluster and in the entire data set, the
values of the confidential attribute in the cluster must be as spread as possible over the entire data
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Algorithm 5 (Continued.) k-Anonymity-first t-closeness aware microaggregation algorithm
Function GenerateCluster(x, X 0, X , k, t)

Data: x: source record for the cluster
X 0: remaining unclustered records of X

X : original data set
k: minimum cluster size
t : desired t-closeness level

Result t-close cluster of k (or more) records

if jX 0j < 2k

C D X 0

else
C = k closest records to x in X 0 (including x itself )
X 0 D X 0 n C

while EMD.C; X/ > t and X 0 ¤ ;

y = record in X 0 that is closest to x

y0 = record C that minimizes EMD.C [ fyg n fy0g; X/

if EMD.C [ fyg n fy0g; X/ < EMD.C; X/

C=C [ fyg n fy0g

end if
X 0 D X 0 n fyg

end while
end if
return C

End Function

set. Consider the case of a cluster with k records. e following proposition lower-bounds EMD
for such a cluster.

Proposition 7.1 Let X be a data set with n records, A be a confidential attribute of X whose
values can be ranked, and C be a cluster of size k. e earth mover’s distance between C and X

with respect to attribute A satisfies:

EMDA.C; X/ �
.nC k/.n � k/

4n.n � 1/k
:

If k divides n, this lower bound is tight.

Proof. EMDcan intuitively be seen as the amount of work needed to transform the distribution of
attributeAwithinC into the distribution ofA overX .e “amount of work” includes two factors:
(i) the amount of probability mass that needs to be moved and (ii) the distance of the movement.
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When computing EMD for t-closeness, the distance of the movements of probability mass for
numerical attributes is measured as the ordered distance, that is, the difference between the ranks
of the values of A in X divided by n � 1.

For the sake of simplicity, assume that k divides n. If that is not the case, the distance will be
slightly greater, so the lower bound we compute is still valid. e probability mass of each of the
values of A is constant and equal to 1=n in X , and it is constant and equal to 1=k in C .is means
that the first factor that determines the EMD (the amount of probability mass to be moved) is
fixed. erefore, to minimize EMD we must minimize the second factor (the distance by which
the probability mass must be moved). Clearly, to minimize the distance, the i-th value of A in
the cluster must lie in the middle of the i-th group of n=k records of X . Figure 7.1 illustrates this
fact.

Figure 7.1: t-closeness first, case k divides n. Confidential attribute values fc1; c2; : : : ; ckg of the
cluster C that minimizes the earth mover’s distance to X . When the confidential attribute values in
X are grouped in k subsets of n=k values, ci is the median of the i-th subset for i D 1; : : : ; k.

In Figure 7.1 and using the ordered distance, the earth mover’s distance can be computed
as k times the cost of distributing the probability mass of element c1 among the n=k elements in
the first subset:

min.EMD/ D k �

n=kX
tD1

1

n

ji � jn=k C 1=2j

n � 1
D

.nC k/.n � k/

4n.n � 1/k
: (7.1)

Formula (7.1) takes element .n=k C 1/=2 as the middle element of a cluster with n=k

elements. Strictly speaking, this is only possible when n=k is odd. When n=k is even, we ought
to take either b.n=k C 1/=2c, the element just before the middle, or d.n=k C 1/=2e, the element
just after themiddle. In any case, the EMDends up being the same as the one obtained in Formula
(7.1). �

Note that, once n and t are fixed, Proposition 7.1 determines the minimum value of k required
for EMD to be smaller than t .An issue with the construction of the k values c1; : : : ; ck depicted in
Figure 7.1 is that it is too restrictive. For instance, for given values of n and t , if the minimal EMD
value computed in Proposition 7.1 is exactly equal to t , then only clusters having as confidential
attribute values c1; : : : ; ck satisfy t-closeness (there may be only one such cluster). Any other
cluster having different confidential attribute values does not satisfy t-closeness. Moreover, in the
construction of Figure 7.1, the clusters are generated based only on the values of the confidential
attribute, which may lead to a large information loss in terms of the quasi-identifiers.
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Given the limitations pointed out above, our goal is to guarantee that the EMD of the
clusters is below a specific value but allowing the clustering algorithm enough freedom to select
appropriate records (in terms of quasi-identifiers) for each of the clusters. e approach that we
propose is similar to the one of Figure 7.1: we group the records in X into k subsets based on
the confidential attribute and we then generate clusters based on the quasi-identifiers with the
constraint that each cluster should contain one record from each of the k subsets (the specific
record is selected based on the quasi-identifier attributes). Proposition 7.2 gives an upper bound
on the level of t-closeness that we attain. To simplify the derivation and the proof, we assume in
the proposition that k divides n.

Proposition 7.2 Let X be a data set with n records and let A be a confidential attribute of X

whose values can be ranked. Let S D fS1; : : : ; Skg be a partition of the records inX into k subsets
of n=k records in ascending order of the attribute A. Let C be a cluster that contains exactly one
record from each of the subsets Si , for i D 1; : : : ; k. en

EMD.C; X/ �
n � k

2.n � 1/k
:

Proof. e factors that determine EMD are: (i) the amount of probability mass that needs to be
moved and (ii) the distance by which it is moved. e first factor is fixed and cannot be modified:
each of the records in X has probability mass 1=n, and each of the records in C has probability
mass of 1=k. As to the second factor, to find an upper bound to EMD, we need to consider a
cluster C that maximizes EMD: the records selected for inclusion into C must be at the lower
(or upper) end of the sets Si for i D 1; : : : ; k. is is depicted in Figure 7.2. (Note the analogy
with the proof of Proposition 7.1: there we took the median of each Si to minimize EMD.)

Figure 7.2: t-closeness first, case k divides n. Confidential attribute values fc1; c2; : : : ; ckg of the
cluster C that maximizes the earth mover’s distance to X . When the confidential attribute values in
X are grouped in k subsets of n=k values, ci is taken as the minimum value of the i-th subset for
i D 1; : : : ; k.

EMD for the case in Figure 7.2 can be computed as k times the cost of distributing the
probability mass of c1 among the n=k elements of S1:

max.EMD/ D k �

n=kX
iD1

1

n

i � 1

n � 1
D

n � k

2.n � 1/k
: (7.2)

�
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With the upper bound on EMD given by Proposition 7.2, we can determine the cluster
size required in the microaggregation: just replace EMD.C; X/ by t on the left-hand side of the
bound and solve for k to get a lower bound for k. For a data set containing n records and for a
required level of t-closeness and k-anonymity, the cluster size must be

maxfk;

�
n

2.n � 1/t C 1

�
g: (7.3)

To keep things simple, so far we have assumed that k divides n. However, the algorithm to
generate t-close data sets must work even if that is not the case. If discarding some records from
the original data set is a viable option, we could discard records until k divides the new n, and
proceed as described above. If records cannot be discarded, some of the clusters would need to
contain more than k records. In particular, we may allow some clusters to have either k or k C 1

records.
If we group the records into k sets with bn=kc records, then r D n mod k records remain.

We propose to assign the remaining r records to one of the subsets. en, when generating the
clusters, two records from this subset are added to the first r clusters. is is only possible if
r � bn=kc (the number of remaining records is not greater than the number of generated clusters);
otherwise, there will be records not assigned to any cluster. Note, however, that using a cluster
size k with r � bn=kc makes no sense: since all clusters receive more than k records, what is
reasonable is to adapt to reality by increasing k. Specifically, to avoid having r � bn=kc, k is
adjusted as

k D k C b.n mod k/= bn=kcc : (7.4)

Adding two records from one of the subsets to a cluster increases the EMD of the cluster.
To minimize the impact over the EMD, we need to reduce the work required to distribute the
probability mass of the extra record across the whole range of values. Hence, the extra record must
be close to the median record of the data set. Figure 7.3 illustrates the types of clusters that we
allow when k is odd (there is a single subset in the middle), and Figure 7.4 illustrates the types of
clusters that we allow when k is even (there are two subsets in the middle). Essentially, when k

is odd, the additional records are added to S.kC1/=2 (the subset in the middle); then, we generate
clusters with size k and clusters with size k C 1, which take two records from S.kC1/=2. When k

is even, the additional records are split between S.k�1/=2 and S.kC1/=2 (the subsets in the middle);
then, we generate clusters with size k and clusters with size k C 1, some with an additional record
from S.k�1/=2 and some from Sk=2.

Just as we did in Proposition 7.2, we can compute an upper bound for the EMD of the
clusters depicted in Figures 7.3 and 7.4. e EMD of a cluster C measures the cost of transform-
ing the distribution of C into the distribution of the entire data set. e cost of the probability
redistribution can be computed in two steps as follows. First, we want the weight of each subset
S1; : : : ; Sk in cluster C (the proportion of records in C coming from each subset) to be equal to
the weight of the subset in the data set; to this end, we redistribute the probability mass of the
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Figure 7.3: t-closeness first, case k does not divide n. Types of clusters when k is odd. Top row, the
data set is split into k subsets. Central row, cluster with k C 1 records. Bottom row, cluster with k

records.

Figure 7.4: t-closeness first, case k does not divide n. Types of clusters when k is even. Top row, the
data set is split into k subsets. Central rows, clusters with k C 1 records (one with two records from
S.k�1/=2 and the other with two records from S.kC1/=2). Bottom row, cluster with k records.

cluster between subsets. is redistribution cost, cost0, equals the EMD between the cluster and
the data set when the distributions have been discretized to the subsets. en, for each subset
Si 2 fS1; : : : ; Skg, we compute costi , an upper bound of the cost of distributing the probability
mass jSi j=n assigned to the subset among its elements (this is analogous to the mass distribution
in the proof of Proposition 7.2). e EMD is the sum cost0 C cost1 C : : :C costk . e fact that
there are subsets with different sizes and there are clusters with different sizes makes formulas
quite tedious and unwieldy, even though the resulting bounds on EMD are very similar to the
one obtained in Proposition 7.2. For these reasons, we will use the latter as an approximation even
when k does not divide n; in particular, we will determine the cluster size using Expression (7.3).

Algorithm 6 formalizes the above described procedure to generate a k-anonymous t-close
data set. It makes use of Expressions (7.3) and (7.4) to determine and adjust the cluster size,
respectively.

In terms of computational cost, Algorithm 6 has a great advantage over Algorithms 4
and 5: when running Algorithm 6, we know that by construction the generated clusters satisfy
t-closeness, so there is no need to compute any EMD distance. Algorithm 6 has cost O.n2=k/,
the same cost order as MDAV (on which it is based). Actually, Algorithm 6 is even slightly more
efficient than MDAV: all operations being equal, some of the computations MDAV performs on
the entire data set are performed by Algorithm 6 just on one of the subsets of n=k records.
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Algorithm 6 t-closeness-first microaggregation algorithm. Distances between records are com-
puted in terms of the quasi-identifiers (Continues.)
Data: X : original data set

n: size of X

k: minimum cluster size
t : t-closeness level

Result Set of clusters satisfying k-anonymity and t-closeness k D maxfk; d n
2.n�1/tC1

eg

k D k C d.n mod k/=bn=kce

Clusters D ;
Split X into S1; : : : ; Sk subsets with bn=kc records in ascending order of the confidential at-
tribute, with any remaining .n mod k/ records assigned to the central subset(s)
while X ¤ ;

xa = average record of X

x0 = most distant record from xa in X

C D ;

for i D 1; : : : ; k

x = closest record to x0 in Si

C D C [ fxg

Si D Si n fxg

X D X n fxg

// Take second record from Si if it contains extra records and no extra record
// has been already added to C

if jSi j > jS1j and jC j D i

x = closest record to x0 in Si

C D C [ fxg

Si D Si n fxg

X D X n fxg

end if
end for

7.4 SUMMARY
is chapter has detailed three microaggregation-based methods to attain k-anonymous t-
closeness, which offer several a priori benefits over generalization/recoding and local suppression.
e first one is a simple merging step that can be run after any microaggregation algorithm. e
other two algorithms, k-anonymity-first and t-closeness-first, take the t-closeness requirement
into account at the moment of cluster formation during microaggregation. e t-closeness-first
algorithm considers t-closeness earliest and provides the best results: smallest average cluster size,
smallest SSE for a given level of t-closeness, and shortest run time (because the actual microag-
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Algorithm 6 (Continued.) t-closeness-first microaggregation algorithm. Distances between
records are computed in terms of the quasi-identifiers

Clusters D Clusters [ fC g
if X ¤ ;

x1 = most distant record from x0 in X

C D ;

for i D 1; : : : ; k

x = closest record to x1 in Si

C D C [ fxg

Si D Si n fxg

X D X n fxg

if jSi j > jS1j and jC j D i

x = closest record to x1 in Si

C D C [ fxg

Si D Si n fxg

X D X n fxg

end if
end for
Clusters D Clusters [ fC g

end if
end while
return Clusters

gregation level is computed beforehand according to the values of k and t). us, considering the
t-closeness requirement from the very beginning turns out to be the best option.
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C H A P T E R 8

Differential Privacy
Differential privacy is a privacy model that has become quite popular because of the strong pri-
vacy guarantees it provides. Differential privacy was initially stated as a privacy guarantee in an
interactive setting, where queries are submitted to a database containing the original individual
records. However, it is general enough to deal with microdata releases. e principle underlying
differential privacy is that the presence or absence of any single individual record in the database
or data set should be unnoticeable when looking at the responses returned for the queries.

8.1 DEFINITION

Differential privacy was originally proposed in [29] as a privacy model in the interactive setting,
that is, to protect the outcomes of queries to a database.e assumption is that an anonymization
mechanism sits between the user submitting queries and the database answering them. To pre-
serve the privacy of individuals, the knowledge gain derived from the presence of an individual
in the data set must be limited.

Definition8.1 .�; ı/-differential privacy A randomized function � gives .�; ı/-differential pri-
vacy if, for all data sets X1 and X2 that differ in one record, and all S � Range.�/, we have

Pr.�.X1/ 2 S/ � exp.�/ � Pr.�.X2/ 2 S/C ı:

We will use the notation �-differential privacy to denote .�; 0/-differential privacy.
Let D be the domain of possible data sets. When faced with the query f , the goal in

differential privacy is to come up with a differentially private mechanism, �f , that approximates
f as closely as possible and returns the response given by �f .

e computational mechanism to attain differential privacy is often called a differentially
private sanitizer. Sanitizers can rely on addition of noise (Laplace distributed, geometrically dis-
tributed, or using the optimal distribution) calibrated to the global sensitivity, addition of noise
calibrated to the smooth sensitivity, or the exponential mechanism.

A good property of differential privacy (not offered by previous privacy models such as
k-anonymity, l-diversity, or t-closeness) is that the combination of several differentially private
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results still satisfies differential privacy, although with different parameters. e following com-
position theorems describe several types of composition.

eorem 8.2 Sequential composition Let �1 be a randomized function giving .�1; ı1/-
differential privacy, and let �2 be a randomized function giving .�2; ı2/-differential privacy. Any
deterministic function of .�1; �2/ gives .�1 C �2; ı1ı2/-differential privacy.

When differentially private mechanisms are applied to disjoint subsets of records, the level
of differential privacy of the original mechanism is preserved.

eorem 8.3 Parallel composition Let �1 and �2 be randomized functions giving .�; ı/-
differential privacy. If the mechanism �1 and �2 are computed over disjoint subsets of records,
then any deterministic function of .�1; �2/ gives .�; ı/-differential privacy.

Another composition theorem known as advanced composition is presented in [30].

8.2 CALIBRATIONTOTHEGLOBAL SENSITIVITY
Let D be the domain of possible data sets. Let f W D! Rk be a query function that maps data
sets to vectors of real numbers.Here we seek to come upwith a differentially privatemechanism �f

of the form �f .X/ D f .X/CNoise, where the distribution of the random noise is independent
of the actual data set X .

e amount of noise required depends on the variability of the function f between neighbor
data sets (data sets that differ in one record). e greater the l1-sensitivity, the greater the amount
of noise that will be required to mask the effect of any single individual record in the response of
the query.

Definition 8.4 l1-sensitivity e l1-sensitivity of a function f W D! Rk is

�f D max
x; y 2 D

d.x; y/ D 1

kf .x/ � f .y/k1 :

eLaplace mechanism
Random noise with Laplace distribution is commonly used to attain �-differential privacy. e
density of the Laplace distribution with mean � and scale b, Lap.�; b/, is

Lap�;b.x/ D
1

2b
exp

�
�
jxj

b

�
:
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eorem 8.5 e Laplace mechanism Let f W D! Rk be a function mapping data sets to
vectors of real numbers. e Laplace mechanism

ML.x; f; �/ D f .x/C .N1; : : : ; Nk/

where Ni � Lap.0; �f =�/ are independent random variables, gives �-differential privacy.

e optimal a.c. mechanism
e Laplace mechanism is the most common choice to obtain �-differential privacy for a given
query f W D! Rk . However, Laplace noise is not optimal, in the sense that other noise dis-
tributions can yield �-differential privacy while having their probability mass more concentrated
around zero.

Deciding which one among a pair of random noise distributions, N1 and N2, yields greater
utility is a question that may depend on the users’ preferences. e goal here is to come up with
an optimality notion that is independent from the users’ preferences. If N1 can be constructed
from N2 by moving some of the probability mass toward zero (but without going beyond zero),
then N1 must always be preferred to N2. e reason is that the probability mass of N1 is more
concentrated around zero, and thus the distortion introduced by N1 is smaller. A rational user
always prefers less distortion and, therefore, prefers N1 to N2.

For a random noise distribution in R, we use the notation < 0; ˛ >, where ˛ 2 R, to de-
note the interval Œ0; ˛� when ˛ � 0, and the interval Œ˛; 0� when ˛ � 0. If N1 can be constructed
from N2 by moving some of the probability mass toward zero, it must be Pr.N1 2< 0; ˛ >/ �

Pr.N2 2< 0; ˛ >/ for any ˛ 2 R. us we define:

Definition 8.6 Let N1 and N2 be two random distributions on R. We say that N1 is smaller
than N2, denoted by N1 � N2 if Pr.N1 2< 0; ˛ >/ � Pr.N2 2< 0; ˛ >/ for any ˛ 2 R. We say
that N1 is strictly smaller than N2, denoted by N1 < N2, if some of the previous inequalities are
strict.

e previous definition deals only with univariate noise distributions. e concept of op-
timal multivariate noise can also be defined. However, dealing with multiple dimensions makes
things more complex. Here we restrict the discussion to univariate random noises. See [92] for
more details on the multivariate case.

We use the previous order relationship to define the concept of optimal random noise. A
noise is optimal within a class if there is no other noise in the class that is strictly smaller.

Definition 8.7 A random noise distribution N1 is optimal within a class C of random noise
distributions if N1 is minimal within C; in other words, there is no other random noise N2 2 C
such that N2 < N1.

e concept of optimality is relative to a specific class C of random noise distributions.
e goal is to determine the optimal noise for a query function f that take values in R. To this
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end, we first need to determine which is the class of random noises C that provide differential
privacy for f . Indeed, C can be directly defined as the class of noise distributions that satisfy the
requirements of differential privacy. However, such definition is not very useful in the construction
of the optimal noise. Here we seek to characterize the noise distributions that give �-differential
privacy in terms of the density function.

Proposition 8.8 Let N be an a.c. random noise with values in R. Let fN be the density function
of N . For a query function f W D! R, the mechanism f CN gives �-differential privacy if

fN .x/ � exp.�/ � fN .x C�f / (8.1)
for all x 2 R continuity point of fN such that x C�f is also a continuity point.

Now we show that the Laplace distribution is not optimal. e basic idea is to concentrate
the probability mass around 0 as much as possible. is can only be done to a certain extent,
because Inequality (8.1) limits our capability to do so.

In the construction of the distribution we will split the domain of fN into intervals of
the form Œi�f; .i C 1/�f � where i 2 Z. For each interval we will redistribute the probabil-
ity mass that fN assigns to that interval. e new density function will take only two val-
ues (see Figure 8.1): maxx2Œi�f;.iC1/�f � fN .x/ at the portion of the interval closer to zero and
minx2Œi�f;.iC1/�f � fN .x/ at the portion of the interval farther from zero. e result is an abso-
lutely continuous distribution where the probability mass has clearly been moved toward zero. It
can be checked that this distribution satisfies Inequality (8.1).

e process used to show that the Laplace distribution is not optimal for �-differential
privacy can be generalized to show that the same construction is possible independently of the
initial noise distribution N .

eorem8.9 Let N be an a.c. random noise with zero mean that provides �-differential privacy
to a query function f . en there exists a random noise N 0 with density of the form

fN 0.x/ D

8̂̂̂̂
<̂
ˆ̂̂:

M exp.�i�/ x 2 Œ�d � .i C 1/�f;�d � i�f �; i 2 N

M x 2 Œ�d; 0�

M x 2 Œ0; d �

M exp.�i�/ x 2 Œd C i�f; d C .i C 1/�f �; i 2 N

that provides �-differential privacy to f and satisfies N 0 � N .
Now it only remains to show that the distributions constructed in eorem 8.9 are in-

deed optimal. is is done by checking that, for such distributions, it is not possible to move the
probability mass toward 0 any more. at is, if we try to move more probability mass toward 0,
�-differential privacy stops being satisfied.

eorem 8.10 Let N be a random noise distribution with density function fN of the form
specified in eorem 8.9. en N is optimal at providing �-differential privacy.
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Figure 8.1: Construction of an optimal distribution based on the Laplace(0,1) distribution.

ediscrete Laplace mechanism
e previous mechanisms (based on the addition of a random noise with values in R) are capable
of providing differential privacy to query functions with values in Z. However, for such query
functions, the use of a noise distribution with support over Z is a better option. e discrete
version of the Laplace distribution is defined as:

Definition 8.11 Discrete Laplace distribution [46] A random variable N follows the discrete
Laplace distribution with parameter ˛ 2 .0; 1/, denoted by DL.˛/, if for all k 2 Z

Pr.N D i/ D
1 � ˛

1C ˛
˛ji j:

Like the Laplace distribution, the discrete Laplace distribution can be used to attain �-
differential privacy. For this purpose, parameter ˛ must be adjusted to the desired level of differ-
ential privacy and to the global sensitivity of the query.

eorem 8.12 ediscrete Laplacemechanism Let f W D! Zk be a function mapping data
sets to vectors of integers. e discrete Laplace mechanism

MDL.x; f; �/ D f .x/C .N1; : : : ; Nk/
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where Ni � DL.exp.��=�f // are independent random variables, gives �-differential privacy.

8.3 CALIBRATIONTOTHE SMOOTHSENSITIVITY
e global sensitivity measures the greatest variability in the query function f between neighbor
data sets. Being an upper bound on the variability, most of the times the variability of f between
a specific data set X and its neighbors is usually lower than the global sensitivity. is is known
as the local sensitivity.

Definition 8.13 Local sensitivity [68] For f W D! Rk and X 2 D, the local sensitivity of f

at X is
LSf .X/ D max

yWd.y;X/D1
kf .X/ � f .y/k1 :

e difference between local and global sensitivities can be large. is is illustrated in the
following example for a function that returns the median of a list of values.

Example 8.14 Consider a data set X D fx1; : : : ; xng where each record corresponds to a value
in f0; 1g. To make things simple we assume that the number of records is odd (so that the median
corresponds to a single record): n D 2mC 1. e global sensitivity of the median is 1, since we
can consider the neighbor data sets:

f0; m: : :; 0; 1; mC1: : : ; 1g ! median D 0

f0; mC1: : : ; 0; 1; m: : :; 1g ! median D 1:

e local sensitivity is, except for the two previous data sets, always 0. e reason is that, except
for the previous data sets, changing the value of a record does not modify the median.

Releasing the value of a query with the addition of a noise whose magnitude is proportional
to the local sensitivity (rather than the global sensitivity) would result in a significantly more
accurate response. However, using the local sensitivity in the mechanisms designed for global
sensitivity does not yield differential privacy.

Example 8.15 Consider the data sets: f0; mC2: : : ; 0; 1; m�1: : : ; 1g and f0; mC1: : : ; 0; 1; m: : :; 1g. In both
cases the median is 0, but the local sensitivity differs: it is 0 in the first one and 1 in the second
one.

median local sensitivity
X D f0; mC2: : : ; 0; 1; m�1: : : ; 1g 0 0
X 0 D f0; mC1: : : ; 0; 1; m: : :; 1g 0 1

Given that the local sensitivity forX 0 is 0, adding a noise proportional to the local sensitivity
does not modify the median; thus the probability of getting 1 is 0. For .�; 0/-differential privacy
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to be satisfied, the probability of getting 1 for X 0 must also be 0. However, that is not the case
because the local sensitivity in this case is different from 0.

e previous example shows that the amount of noise used in a data set should not only be
proportional to its local sensitivity but also take into account the local sensitivity of neighbor data
sets. is is the smooth sensitivity.

Definition 8.16 Smooth sensitivity For ˇ > 0 the ˇ-smooth sensitivity of f is

Sf;ˇ .x/ D max
y2D

.LSf .y/ exp.�ˇd.x; y///:

egreater the ˇ parameter, the smaller the dependence of the smooth sensitivity on the lo-
cal sensitivity of neighbor data sets.us, the amount of noise required to attain .�; ı/-differential
privacy must depend on factors other than the smooth sensitivity. In particular we are interested
in .˛; ˇ/-admissible noise distributions, which are distributions that bound the change in prob-
ability due to sliding and dilatation.

Definition 8.17 Admissible noise distribution e distribution of a random noise N on Rk

is .˛; ˇ/-admissible for .�; ı/-differential privacy if for all k�k � ˛ and j�j � ˇ and all S � Rk

we have the sliding property

Pr.N 2 S/ � exp.�=2/Pr.N 2 S C�/C
ı

2

and the dilatation property

Pr.N 2 S/ � exp.�=2/Pr.N 2 exp.�/S/C
ı

2
:

.˛; ˇ/-Admissible noise distributions can be used to design .�; ı/-differentially private
mechanisms, as stated by the following theorem.

eorem 8.18
Let N be an .˛; ˇ/-admissible noise distribution for .�; ı/-differential privacy. en the

mechanism
A.x/ D f .x/C

Sf;ˇ .x/

˛
N

gives .�; ı/-differential privacy.
To come up with an effective mechanism for .�; ı/-differential privacy we need an .˛; ˇ/-

admissible noise distribution. Table 8.1 lists some noise distributions together with the levels of
admissibility for .�; ı/-differential privacy.
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Table 8.1: Admissible distributions for .�; ı/-differential privacy

Density function .˛; ˇ/-admissibility for .�; ı/
1

1Cjzj
for  > 1, z 2 R . �

4
; �


/

1
2
exp.�jzj/ for z 2 R . �

2
; �

2
ln.1

ı
//

1
2�

exp.�z2

2
/ for z 2 R . �p

ln.1=ı/
; �

2
ln.1

ı
//

8.4 THEEXPONENTIALMECHANISM
emechanisms based on noise addition were designed for query functions f that take values in
Rk . When the outcome of the query is categorical rather than numerical these mechanisms may
not be suitable. Ordinal categorical attributes can be seen as numerical attributes (for instance,
by replacing each category by the corresponding rank) and, thus, the noise addition mechanisms
remain useful. For other types of categorical attributes (e.g., nominal or hierarchical), where the
relation between categories can be complex, trying to adapt previous mechanisms for numerical
data is not an appropriate solution.

For a numerical query function it is implicit that the closer the value reported by the differ-
entially private mechanism to the actual value the better. For categorical attributes, the effect on
the utility of not getting the actual value must be clarified. is is done by introducing a scoring
function that associates a score (utility) to each possible output given the actual data set.

Definition 8.19 Scoring function LetD be the set of all possible data sets. Let f W D! R be
a query function with values in a set R. A scoring function uf maps all pairs .X; r/ 2 D �R to
a value in R showing how good r is as a replacement for f .X/. e greater uf .X; r/ the better.

Having defined a scoring function that measures the relative utility of each possible re-
sponse, we can design a differentially private mechanism that seeks to maximize the probability
of the responses that give better utility [62].

Definition 8.20 e exponential mechanism Given a scoring function uf W D �R! R, the
exponential mechanism E�

uf
evaluated at X 2 D outputs a value in r 2 R with probability pro-

portional to exp. �
2
uf .X; r//

E�
uf

.X/ D choose r with probability proportional to exp. �
2
uf .X; r//:

It can be shown that the exponential mechanism gives ��uf -differential privacy, where
�uf (the sensitivity of the scoring function) is the maximum change in the scoring function
between neighbor data sets

�uf D max
d.X; X 0/ D 1

r 2 R

juf .X; r/ � uf .X 0; r/j:
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eorem 8.21 e exponential mechanism E�
uf

gives ��uf -differential privacy.
Although the exponential mechanism has been presented as a mechanism for categorical

data, it is general enough to be applied for any kind of data. e scoring function models all
the properties of the data that are of interest in trying to get the best response. For instance,
the Laplace noise addition mechanism can be seen as an exponential mechanism with scoring
function uf .X; r/ D �jf .X/ � r j.

8.5 RELATIONTO k-ANONYMITY-BASEDMODELS
Syntactic privacy models are those models that require the protected data set to have a specific
form that is known to offer protection against disclosure risk. In k-anonymity, we require the
protected data set to be partitioned in equivalence classes with cardinality k or more. l-diversity
and t-closeness add to the requirements of k-anonymity a minimum variability of the confidential
attribute in each equivalence class. ese privacy models are usually counterposed to differential
privacy, which (instead of requiring the protected data set to have a specific form) limits the effect
of any individual on a query response. However, [24, 91] show that t-closeness and differential
privacy are more related than it may seem at first glance.

We show that, if t-closeness holds, then we have differential privacy on the projection over
the confidential attributes. e quasi-identifier attributes are excluded from our discussion. e
reason is that t-closeness offers no additional protection to the quasi-identifiers beyond what k-
anonymity does. For example, we may learn that an individual is not in the data set if there is no
equivalence class in the released t-close data whose quasi-identifier values are compatible with
the individual’s.

e main requirement for the implication between t-closeness and differential privacy re-
lates to the satisfaction of the t-closeness requirements about the prior and posterior knowledge
of an observer. t-closeness assumes that the distribution of the confidential data is public infor-
mation (this is the prior view of observers about the confidential data) and limits the knowledge
gain between the prior and posterior view (the distribution of the confidential data within the
equivalence classes) by limiting the distance between both distributions.

Rather than using EMD as a distance for t-closeness, we consider the following multi-
plicative distance.

Definition 8.22 Given two random distributions D1 and D2, we define the distance between
D1 and D2 as:

d.D1; D2/ D maxfPrD1
.S/

PrD2
.S/

;
PrD2

.S/

PrD1
.S/
g

where S is an arbitrary (measurable) set, and we take the quotients of probabilities to be zero, if
both PrD1

.S/ and PrD2
.S/ are zero, and to be infinity if only one of them is zero.
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If the distributions D1 and D2 are discrete (as is the case for the empirical distribution of a
confidential attribute in a microdata set), computing the distance between them is simpler: taking
the maximum over the possible individual values suffices.

Proposition 8.23 If distributions D1 and D2 take values in a discrete set fx1; : : : ; xng, then the
distance d.D1; D2/ can be computed as

d.D1; D2/ D max
iD1;:::;n

f
PrD1

.xi /

PrD2
.xi /

;
PrD2

.xi /

PrD1
.xi /
g:

Suppose that t-closeness holds; that is, the protected data set Y consists of several equiva-
lence classes selected in such a way that the multiplicative distance proposed in Definition 8.22
between the distribution of the confidential attribute over the whole data set and the distribu-
tion within each of the equivalence classes is less than t . We will show that, if the assumption on
the prior and posterior views of the data made by t-closeness holds, then exp.�=2/-closeness im-
plies �-differential privacy. A microdata release can be viewed as the collected answers to a set of
queries, where each query requests the attribute values associated to a different individual. As the
queries relate to different individuals, checking that differential privacy holds for each individual
query suffices, by parallel composition, to check that it holds for the entire data set. Let I be a
specific individual in the data set and let �I be the query that asks for I ’s confidential data. For
differential privacy to hold, the response to �I should similar between data sets that differ in one
record. Notice that, even if the response to query �I is associated with individual I , including I ’s
data in the data set vs. not including them must modify the probability of the output by a factor
not greater than exp.�/. We have the following result.

Proposition 8.24 Let �I .�/ be the function that, when evaluated on a data set, returns I ’s con-
fidential data in the data set. If the assumptions of t-closeness hold, then exp.�=2/-closeness
implies �-differential privacy of �I . In other words, if we restrict the domain of �I to exp.�=2/-
close data sets, then we have �-differential privacy for �I .

Proof. Let Y1 and Y2 be data sets that differ in one record. We suppose that Y1 and Y2 sat-
isfy exp.�=2/-closeness. In other words, the distribution of the confidential data in each equiv-
alence class of Yi differs by a factor not greater than exp.�=2/ from the prior knowledge, that
is, the distribution of the confidential data in the overall Yi , for i D 1; 2. We want to check that
Pr.�I .Y1/ 2 S/ � exp.�/Pr.�I .Y2/ 2 S/.

Let P0 be the prior knowledge about the confidential data. e probabilities Pr.�I .Y1/ 2

S/ and Pr.�I .Y2/ 2 S/ are determined by the posterior view of I ’s confidential data given Y1 and
Y2, respectively. We consider four different cases: (i) I … Y1 and I … Y2, (ii) I … Y1 and I 2 Y2,
(iii) I 2 Y1 and I … Y2, and (iv) I 2 Y1 and I 2 Y2.
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In case (i), the posterior view does not provide information about I beyond the one in
the prior view: we have Pr.�I .Y1/ 2 S/ D P0.S/ D Pr.�I .Y2/ 2 S/. Hence, the �-differential
privacy condition is satisfied.

Cases (ii) and (iii) are symmetric. We focus on case (ii). Because I … Y1, the posterior view
about I equals the prior view: Pr.�I .Y1/ 2 S/ D P0.S/. On the other hand, because I 2 Y2,
the probability Pr.�I .Y2/ 2 S/ is determined by the distribution of the confidential data in the
corresponding equivalence class (the posterior view). Because Y2 satisfies exp.�=2/-closeness
the posterior view differs from the prior view by a factor of, at most, exp.�=2/: Pr.�I .Y2/ 2

S/=Pr.�I .Y1/ 2 S/ � exp.�=2/. Hence, �=2-differential privacy condition is satisfied. In par-
ticular, �-differential privacy condition is satisfied.

In case (iv), because I 2 Y1 and I 2 Y2, both probabilities Pr.�I .Y1/ 2 S/ and Pr.�I .Y2/ 2

S/ are determined by the corresponding posterior views. Because Y1 and Y2 satisfy exp.�=2/-
closeness, both posterior views differ from P0 by a factor of not greater than exp.�=2/. In par-
ticular, Pr.�I .Y1/ 2 S/ and Pr.�I .Y2/ 2 S/ differ at most by a factor of exp.�/ and, hence, the
�-differential privacy condition is satisfied. �

e previous proposition shows that, if the assumptions of t-closeness about the prior and
posterior views of the intruder are satisfied, then the level of disclosure risk limitation provided
by t-closeness is as good as the one of �-differential privacy. Of course, differential privacy is
independent of the prior knowledge, so the proposition does not apply in general. However, when
it applies, it provides an effective way of generating an �-differentially private data set, using the
construction in [24].

8.6 DIFFERENTIALLY PRIVATEDATAPUBLISHING
In contrast to the general-purpose data publication offered by k-anonymity, which makes no
assumptions on the uses of published data and does not limit the type and number of analyses that
can be performed, differential privacy severely limits data uses. Indeed, in the interactive scenario,
differential privacy allows only a limited number of queries to be answered (until the privacy
budget is exhausted); in the extensions to the non-interactive scenario, any number of queries can
be answered, but utility guarantees are only offered for a restricted class of queries.

e usual approach to releasing differentially private data sets is based on histogram
queries [109, 110], that is, on approximating the data distribution by partitioning the data do-
main and counting the number of records in each partition set. To prevent the counts from leak-
ing too much information, they are computed in a differentially private manner. Apart from the
counts, partitioning can also reveal information. One way to prevent partitioning from leaking
information consists in using a predefined partition that is independent of the actual data under
consideration (e.g., by using a grid [54]).

e accuracy of the approximation obtained via histogram queries depends on the size of
the histogram bins (the greater they are, the more imprecise is the attribute value) as well as on the
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number of records contained in them (the more records, the less relative error). For data sets with
sparsely populated regions, using a predefined partition may be problematic. Several strategies
have been proposed to improve the accuracy of differentially private count (histogram) queries,
which we next review. In [42] consistency constraints between a set of queries are exploited to
increase accuracy. In [108] a wavelet transform is performed on the data, and noise is added in
the frequency domain. In [52, 110] the histogram bins are adjusted to the actual data. In [12], the
authors consider differential privacy of attributes whose domain is ordered and has moderate to
large cardinality (e.g., numerical attributes); the attribute domain is represented as a tree, which
is decomposed in order to increase the accuracy of answers to count queries (multi-dimensional
range queries). In [64], the authors generalize similar records by using coarser categories for the
classification attributes; this results in higher counts of records in the histogram bins, which are
much larger than the noise that needs to be added to reach differential privacy. For data sets with
a significant number of attributes, attaining differential privacy while at the same time preserv-
ing the accuracy of the attribute values (by keeping the histogram bins small enough) becomes
a complex task. Observe that, given a number of bins per attribute, the total number of bins
grows exponentially with the number of attributes. us, in order to avoid obtaining too many
sparsely populated bins, the number of bins per attribute must be significantly reduced (with the
subsequent accuracy loss).

An interesting approach to deal with multidimensional data is proposed in [63, 111]. e
goal of these papers is to compute differentially private histograms independently for each at-
tribute (or jointly for a small number of attributes) and then try to generate a joint histogram
for all attributes from the partial histograms. is was done for a data set of commuting patterns
in [63] and for an arbitrary data set in [111]. In particular, [111] first tried to build a dependency
hierarchy between attributes. Intuitively, when two attributes are independent, their joint his-
togram can be reconstructed from the histograms of each of the attributes; thus, the dependency
hierarchy helps determine which marginal or low-dimension histograms are more interesting to
approximate the joint histogram.

An alternative to the generation of differentially private synthetic data sets via histogram
approximation is to apply a masking procedure to the records in the original data set. We can see
the process of generation of the differentially private data set as the process of giving differentially
private answers to the queries that ask for the contents of each record. Of course, since the purpose
of differential privacy is to make the answer to a query similar independently of the presence or
absence of any individual, if the generation of the differentially private data set is done naively
a large information loss can be expected. Two approaches based on microaggregation have been
proposed to reduce the sensitivity of the queries. In [96, 97] a multivariate microaggregation is
run on the original data and the differentially private data set is generated from the centroids
of microaggregation clusters. Since the centroid is the average of all records in the cluster, it is
less sensitive than a single record. e multivariate microaggregation approach is presented in
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Chapter 9.3. In [85, 86] a univariate microaggregation is performed on each attribute in order to
offer better utility preservation.

8.7 SUMMARY
is chapter has introduced the .�; ı/-differential privacy model, as well as its better-known par-
ticular case �-differential privacy. Unlike k-anonymity, l-diversity, and t-closeness, that were
aimed at microdata releases, differential privacy seeks to guarantee that the response to a query
is not disclosive (by guaranteeing that the presence or absence of any individual does not sub-
stantially modify the query response). ree types of mechanisms to attain differential privacy
have been presented: data-independent noise addition (which adds an amount of noise that is
independent of the actual data set), data-dependent noise addition (which adds an amount of
noise that depends on the actual data set), and the exponential mechanism (which is based on
a scoring function that rates the utility of each possible result). We have also shown that, if the
assumptions of t-closeness are satisfied, the level of protection provided by t-closeness is compa-
rable to the level of protection offered by �-differential privacy. Although not initially intended
for microdata releases, differentially private data sets may be generated. We have introduced two
approaches to this task: i) via histogram queries, that is, via a differentially private approximation
of the original data, and ii) via perturbative masking yielding differentially private responses to
the queries that ask for the contents of each record. In the next two chapters, we describe in detail
two microaggregation-based mechanisms aimed at reducing the noise that needs to be added to
obtain differentially private data sets.
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C H A P T E R 9

Differential Privacy by
MultivariateMicroaggregation

Although differential privacy was designed as a privacy model for queryable databases, as intro-
duced in Section 8.6, several methods to generate differentially private data sets have been pro-
posed. is chapter reviews perturbative masking approaches to generate a differentially private
data set aimed at being as general as k-anonymity [96, 97].

9.1 REDUCINGSENSITIVITY VIA PRIORMULTIVARIATE
MICROAGGREGATION

Differential privacy and microaggregation offer quite different disclosure limitation guarantees.
Differential privacy is introduced in a query-response environment and offers probabilistic guar-
antees that the contribution of any single individual to the query response is limited, while mi-
croaggregation is used to protect microdata releases and works by clustering groups of individuals
and replacing them by the group centroid. When applied to the quasi-identifier attributes, mi-
croaggregation achieves k-anonymity. In spite of those differences, we can leverage the masking
introduced by microaggregation to decrease the amount of random noise required to attain dif-
ferential privacy.

Let X be a data set with attributes X1; : : : ; Xm and NX be a microaggregated X with min-
imal cluster size k. Let M be a microaggregation function that takes as input a data set, and
outputs a microaggregated version of it: M.X/ D NX . Let f be an arbitrary query function for
which an �-differentially private response is requested. A typical differentially private mechanism
takes these steps: capture the query f , compute the real response f .X/, and output a masked
value f .X/CN , where N is a random noise whose magnitude is adjusted to the sensitivity of f .

To improve the utility of an �-differentially private response to f , we seek to minimize the
distortion introduced by the random noise N . Two main approaches are used for this purpose.
In the first one, a random noise is used that allows for a finer calibration to the query f under
consideration. For instance, if the variability of the query f is highly dependent on the actual data
set X , using a data-dependent noise (like in Section 8.3) would probably reduce the magnitude
of the noise. In the second approach, the query function f is modified so that the new query
function is less sensitive to modifications of a record in the data set.
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e use of microaggregation proposed in this chapter falls into the second approach: we
replace the original query function f by f ıM , that is, we run the query f over the microag-
gregated data set NX . For our proposal to be meaningful, the function f ıM must be a good
approximation of f . Our assumption is that the microaggregated data set NX preserves the statis-
tical information contained in the original data set X ; therefore, any query that is only concerned
with the statistical properties of the data in X can be run over the microaggregated data set NX
without much deviation. e function f ıM will certainly not be a good approximation of f

when the output of f depends on the properties of specific individuals; however, this is not our
case, as we are only interested in the extraction of statistical information.

Since the k-anonymous data set NX is formed by the centroids of the clusters (i.e., the
average records), for the sensitivity of the queries f ıM to be effectively reduced the centroid
must be stable against modifications of one record in the original data set X . is means that
modification of one record in the original data set X should only slightly affect the centroids
in the microaggregated data set. Although this will hold for most of the clusters yielded by any
microaggregation algorithm, we need it to hold for all clusters in order to effectively reduce the
sensitivity.

Not all microaggregation algorithms satisfy the above requirement; for instance, if the mi-
croaggregation algorithm could generate a completely unrelated set of clusters after modification
of a single record in X , the effect on the centroids could be large. As we are modifying one record
in X , the best we can expect is a set of clusters that differ in one record from the original set
of clusters. Microaggregation algorithms with this property lead to the greatest reduction in the
query sensitivity; we refer to them as insensitive microaggregation algorithms.

Definition 9.1 (Insensitive microaggregation). Let X be a data set, M a microaggregation al-
gorithm, and let fC1; : : : ; Cng be the set of clusters that result from running M on X . Let X 0 be
a data set that differs from X in a single record, and fC 0

1; : : : ; C 0
ng be the clusters produced by

running M on X 0. We say that M is insensitive to the input data if, for every pair of data sets X

and X 0 differing in a single record, there is a bijection between the set of clusters fC1; : : : ; Cng

and the set of clusters fC 0
1; : : : ; C 0

ng such that each pair of corresponding clusters differs at most
in a single record.

Since for an insensitive microaggregation algorithm corresponding clusters differ at most
in one record, bounding the variability of the centroid is simple. For instance, for numerical data,
when computing the centroid as the mean, the maximum change for each attribute equals the size
of the range of the attribute divided by k. If the microaggregation was not insensitive, a single
modification in X might lead to completely different clusters, and hence to large variability in the
centroids.

e output of microaggregation algorithms is usually highly dependent on the input data.
On the positive side, this leads to greater within-cluster homogeneity and hence less information
loss. On the negative side, modifying a single record in the input data may lead to completely
different clusters; in other words, such algorithms are not insensitive to the input data as per Def-
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inition 9.1. We illustrate this fact for MDAV. Figure 9.1 shows the clusters generated by MDAV
for a toy data set X consisting of 15 records with two attributes, before and after modifying a
single record. In MDAV, we use the Euclidean distance and k D 5. Two of the clusters in the
original data set differ by more than one record from the respective most similar clusters in the
modified data set. erefore, no mapping between clusters of both data sets exists that satisfies
the requirements of Definition 9.1. e centroids of the clusters are represented by a cross. A
large change in the centroids between the original and the modified data sets can be observed.

We want to turn MDAV into an insensitive microaggregation algorithm, so that it can
be used as the microaggregation algorithm to generate NX . MDAV depends on two parameters:
the minimal cluster size k, and the distance function d used to measure the distance between
records. Modifying k does not help making MDAV insensitive: similar examples to the ones in
Figure 9.1 can easily be proposed for any k > 1; on the other hand, setting k D 1 does make
MDAV insensitive, but it is equivalent to not performing any microaggregation at all. Next, we
see that MDAV is insensitive if the distance function d is consistent with a total order relation.

�

�

�

�

�

�

Figure 9.1: MDAV clusters and centroids with k D 5. Left, original data set X ; right, data set after
modifying one record in X .

Definition 9.2 A distance function d W X �X ! R is said to be consistent with an order rela-
tion �X if d.x; y/ � d.x; z/ whenever x �X� y �X z.

Proposition 9.3 Let X be a data set equipped with a total order relation �X . Let d W X �X !

R be a distance function consistent with �X . MDAV with distance d satisfies the insensitivity
condition (Definition 9.1).

Proof. When the distance d is consistent with a total order, MDAV with cluster size k reduces
to iteratively taking sets with cardinality k from the extremes, until less than k records are left;
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the remaining records form the last cluster. Let x1; : : : ; xn be the elements of X sorted according
to �X . MDAV generates a set of clusters of the form:

fx1; : : : ; xkg; : : : ; fxn�kC1; : : : ; xng:

We want to check that modifying a single record of X leads to a set of clusters that differ
in at most one element. Suppose that we modify record x by setting it to x0, and let X 0 be the
modified data set. Without loss of generality, we assume that x �X x0; the proof is similar for the
case x0 �X x.

Let C be the cluster of X that contains x, and C 0 the cluster of X 0 that contains x0. Let
m be the minimum of the elements in C , and let M be the maximum of the elements in C 0. As
MDAV takes groups of k records from the extremes, the clusters of X whose elements are all
inferior to m, or all superior to M remain unmodified in X 0. erefore, we can assume that x

belongs to the leftmost cluster of X , and x0 belongs to the rightmost cluster in X 0.
Let C1; : : : ; Cm and C 0

1; : : : ; C 0
m be, respectively, the clusters of X and X 0, ordered ac-

cording to �X . Let xi
1and xi

ji
be the minimum and the maximum of the elements of Ci :

Ci D fz 2 X jxi
1 �X z �X xi

ji
g. Cluster C 0

1 contains the same elements as C1 except for x that
has been removed from C 0

1 and for x2
1 that has been added to C 0

1, C 0
1 D .C1 [ fx

2
1g/ n fxg. Clus-

ters C 0
2; : : : ; C 0

m�1 contain the same elements as the respective cluster C2; : : : ; Cm�1, except for
xi

1 that has been removed from C 0
i and xiC1

1 that has been added to C 0
i . Cluster C 0

m contains the
same elements as Cm except for xm

1 that has been removed from C 0
m and x0 that has been added

to C 0
m. erefore, clusters Ci and C 0

i differ in a single record for all i , which completes the proof.
�

We have seen that, when the distance function is consistent with a total order relation,
MDAV is insensitive. Now, we want to determine the necessary conditions for an arbitrary mi-
croaggregation algorithm to be insensitive. Algorithm 7 describes the general form of a microag-
gregation algorithm with fixed cluster size k. Essentially it keeps selecting groups of k records,
until fewer than 2k records are left; the remaining records form the last cluster, whose size is
between k and 2k � 1. Generating each cluster requires a selection criterion to prioritize some
elements over the others. We can think of this prioritization as an order relation �i , and the
selection criterion for constructing the cluster Ci to be “select the k smallest records according
to �i .” Note that the prioritization used to generate different clusters need not be the same; for
instance, MDAV selects the remaining element that is farthest from the average of remaining
points, and prioritizes based on the distance to it.

Let X and X 0 be a pair of data sets that differ in one record. For Algorithm 7 to be insen-
sitive, the sequence of orders �i must be constant across executions of the algorithm; to see this,
note that if one of the orders �i changed, we could easily construct data sets X and X 0 such that
cluster Ci in X would differ by more than one record from its corresponding cluster in X 0, and
hence the algorithm would not be insensitive.
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Algorithm 7 General form of a microaggregation algorithm with fixed cluster size
let X be the original data set
let k be the minimal cluster size

set i WD 0

while jX j � 2k do
Ci  k smallest elements from X according to �i

X WD X n Ci

i WD i C 1

end while
X  Replace each record r 2 X by the centroid of its cluster

return X

Another requirement for Algorithm 7 to be insensitive is that the priority assigned by �i

to any two different elements must be different. If there were different elements sharing the same
priority, we could end up with clusters that differ by more than one record. For instance, assume
that the sets X and X 0 are such that X 0 D .X [ fxg/ n fx0g, and assume that x belongs to cluster
Ci and x0 belongs to cluster C 0

i . Clusters Ci and C 0
i already differ in one element, so for the

clustering to be insensitive all the other records in these clusters must be equal. If there was a
pair of elements, y ¤ y0, with the same priority, and if only one of them was included in each of
the clusters Ci and C 0

i , then, as there is no way to discriminate between y and y0, we could, for
instance, include y in Ci , and y0 in C 0

i . In that case the clusters Ci and C 0
i would differ by more

than one record. erefore, for the microaggregation to be insensitive �i must assign a different
priority to each element; in other words, �i must be a total order.

A similar argument to the one used in Proposition 9.3 can be used to show that when the
total order relation is the same for all the clusters—in other words, when �i and �j are equal
for any i and j—then Algorithm 7 is insensitive to the input data. However, we want to show
that even when the total orders �i are different, insensitivity still holds. In fact, Proposition 9.4
provides a complete characterization of insensitive microaggregation algorithms of the form of
Algorithm 7.

Proposition9.4 Algorithm 7 is insensitive to input data if and only if f�igi2N is a fixed sequence
of total order relations defined over the domain of X .

Proof. In the discussion previous to Proposition 9.3 we have already shown that if Algorithm 7
is insensitive, then f�igi2N must be a fixed sequence of total order relations. We show now that
the reverse implication also holds: if f�igi2N is a fixed sequence of total order relations, then
Algorithm 7 is insensitive to input data.
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Let X and X 0 be, respectively, the original data set and a data set that differs from X in
one record. Let Ci and C 0

i be, respectively, the clusters generated at step i for the data sets X and
X 0. We want to show, for any i , that Ci and C 0

i differ in at most one record.
An argument similar to the one in Proposition 9.3 shows that the clusters C0 and C 0

0 that
result from the first iteration of the algorithm differ in at most one record. To see that Algorithm 7
is insensitive, it is enough to check that the sets X n C0 and X 0 n C 0

0 differ in at most one record;
then, we could apply the previous argument to X n C0 and X 0 n C 0

0 to see that C1 and C 0
1 differ

in one record, and so on.
Let x1; : : : ; xn be the elements of X ordered according to �0, so that C0 D fx1; : : : ; xkg.

Assume that X 0 has had element x replaced by x0: X 0 D fx1; : : : ; xn; x0g n fxg. We have the
following four possibilities. (i) If neither x belongs to C0 nor x0 belongs to C 0

0, then C0 and C 0
0

must be equal; therefore, X n C0 and X 0 n C 0
0 differ, at most, in one record. (ii) If both x belongs

to C0 and x0 belongs to C 0
0, then X n C0 and X 0 n C 0

0 are equal. (iii) If x belongs to C0 but x0 does
not belong to C 0

0, we can write C 0
0 as fx1; : : : ; xkC1g n fxg; the set X 0 n C 0

0 is fxkC2; : : : ; xn; x0g,
which differs in one record from X n C0 D fxkC1; : : : ; xng; and (iv) If x is not in C0 but x0 is
in C 0

0, we can write C 0
0 as fx1; : : : ; xk�1; x0g; the set X 0 n C 0

0 is fxk; : : : ; xng n fxg, which differs
in one record from X n C0 D fxkC1; : : : ; xng: erefore, we have seen that X n C0 and X 0 n C 0

0

differ in at most one record, which completes the proof. �

Using multiple order relations in Algorithm 7, as allowed by Proposition 9.4, in contrast
with the single order relation used to turn MDAV insensitive in Proposition 9.3, allows us to
increase the within-cluster homogeneity achieved in the microaggregation.

emodification of the query function f to f ıM by introducing a priormicroaggregation
step is intended to reduce the sensitivity of the query function. Assume that the microaggregation
function f computes the centroid of each cluster as the mean of its components. We analyze next
how microaggregation affects the L1-sensitivity of the query function f .

e L1-sensitivity of f , �.f /, measures the maximum change in f that results from a
modification of a single record in X . Essentially, the microaggregation step M in f ıM dis-
tributes the modification suffered by a single record in X among multiple records in M.X/. Con-
sider, for instance, the data setsX andX 0 depicted in Figure 9.2.e record at the top right corner
in X has been moved to the bottom left corner in X 0; all the other records remain unmodified. In
the microaggregated data sets M.X/ and M.X 0/—the crosses represent the centroids—we ob-
serve that all the centroids have been modified but the magnitude of the modifications is smaller:
the modification suffered by the record at the top right corner of X has been distributed among
all the records in M.X/.

When computing the centroid as the mean, we can guarantee that the maximum variation
in any centroid is at most 1=k of the variation of the record in X . erefore, we can think of
the L1-sensitivity of f ıM as the maximum change in f if we allow a variation in each record
that is less than 1=k times the maximal variation. In fact, this is a very rough estimate, as only
a few centroids can have a variation equaling 1=k of the maximal variation in X , but it is useful
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to analyze some simple functions such as the identity. e identity function returns the exact
contents of a specific record, and is used extensively in later sections to construct �-differentially
private data sets. e sensitivity of the identity functions depends only on the maximum variation
that the selected record may suffer; therefore, it is clear that distributing the variation among
several records decreases sensitivity. is is formalized in the following proposition.

Proposition 9.5 Let X 2 Dn be a data set with numerical attributes only. Let M be a microag-
gregation function with minimal cluster size k that computes the centroid by taking the mean
of the elements of each cluster. Given a record r 2 X , let Ir./ be the function that returns the
attribute values contained in record r of X . en �.Ir ıM/ � �.Ir/=k.

Proof. e function Ir ıM returns the centroid of M.X/ that corresponds to the record r in X .
It was shown in the discussion that precedes the proposition that, for a data set that contains only
numerical attributes, if the centroid is computed as the mean of the records in the cluster, then
the maximum change in any centroid is, at most, �.Ir/=k; that is, �.Ir ıM/ � �.Ir/=k. �

9.2 DIFFERENTIALLY PRIVATEDATA SETS BY
INSENSITIVEMICROAGGREGATION

Assume that we have an original data set X and that we want to generate a data set X�—an
anonymized version of X—that satisfies �-differential privacy. Even if differential privacy was
not introduced with the aim of generating anonymized data sets, we can think of a data release as
the collected answers to successive queries for each record in the data set. Let Ir./ be as defined
in Proposition 9.5. We generate X�, by querying X with Ir.X/, for all r 2 X . If the responses to
the queries Ir./ satisfy �-differential privacy, then, as each query refers to a different record, by
the parallel composition property X� also satisfies �-differential privacy.

e proposed approach for generating X� is general but naive. As each query Ir./ refers to
a single individual, its sensitivity is large; therefore, the masking required to attain �-differential
privacy is quite significant, and thus the utility of such an X� very limited.

To improve the utility of X�, we introduce a microaggregation step as discussed in Sec-
tion 9.1: (i) from the original data set X , we generate a k-anonymous data set X—by using a
microaggregation algorithm with minimum cluster size k, like MDAV, and assuming that all
attributes are quasi-identifiers—and (ii) the �-differentially private data set X� is generated from
the k-anonymous data set X by taking an �-differentially private response to the queries Ir.X/,
for all r 2 X .

By constructing the k-anonymous data set X , we stop thinking in terms of individuals, to
start thinking in terms of groups of k individuals. Now, the sensitivity of the queries Ir.X/ used
to construct X� reflects the effect that modifying a single record in X has on the groups of k

records in X . e fact that each record in X depends on k (or more) records in X is what allows
the sensivity to be effectively reduced. See Proposition 9.5 above.
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Algorithm 8 details the procedure for generating the differentially private data set X�.

Algorithm 8 Generation of an �-differentially private data set X� from X via microaggregation
let X be the original data set
let M be an insensitive microaggregation algorithm with minimal cluster size k

let S�./ be an �-differentially private sanitizer
let Ir./ be the query for the attributes of record r

X  microaggregated data set M.X/

for each r 2 X do
r�  S�.Ir.X//

insert r� into X�

end for

return X�

Achieving differential privacy with numerical attributes
For a data set consisting of numerical attributes only, generating the �-differentially private data
set X� as previously described is quite straightforward.

Let X be a data set with m numerical attributes: X1; : : : ; Xm. e first step to construct
X� is to generate the k-anonymous data set X via an insensitive microaggregation algorithm. As
we have seen in Section 9.1, the key point of insensitive microaggregation algorithms is to define
a total order relation over Dom.X/, the domain of the records of the data set X . e domain of
X contains all the possible values that make sense, given the semantics of the attributes. In other
words, the domain is not defined by the actual records in X but by the set of values that make
sense for each attribute and by the relation between attributes.

Microaggregation algorithms use a distance function, d W Dom.X/ � Dom.X/ ! R, to
measure the distances between records and generate the clusters. We assume that such a distance
function is already available and we define a total order with which the distance is consistent.
To construct a total order, we take a reference point R, and define the order according to the
distance to R. Given a pair of elements x; y 2 Dom.X/, we say that x � y if d.R; x/ � d.R; y/.
On the other hand, we still need to define the relation between elements that are equally distant
from R. As we assume that the data set X consists of numerical attributes only, we can take
advantage of the fact that individual attributes are equipped with a total order—the usual nu-
merical order—and sort the records that are equally distant from R by means of the alphabetical
order: given x D .x1; : : : ; xm/ and y D .y1; : : : ; ym/, with d.x; R/ D d.y; R/, we say that x � y

if .x1; : : : ; xm/ � .y1; : : : ; ym/ according to the alphabetical order.
Proposition 9.5 shows that, as a result of the insensitive microaggregation, one has �.Ir ı

M/ D �.Ir/=k; therefore, �-differential privacy can be achieved by adding to X an amount of
Laplace noise that would only achieve k�-differential privacy if directly added to X .
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Figure 9.2: Insensitive MDAV microaggregation with k D 5. Left, original data set X ; right, data
set after modifying one record in X .

InsensitiveMDAV
According to Proposition 9.3, to make MDAV insensitive we must define a total order among
the elements in Dom.X/. According to the previous discussion, this total order is constructed by
selecting a reference point. To increase within-cluster homogeneity, MDAV starts by clustering
the elements at the boundaries. For our total order to follow this guideline, the reference point R

must be selected among the elements of the boundary of Dom.X/. For instance, if the domain
of X i is Œai

b
; ai

t �, we can set R to be the point .a1
b
; : : : ; am

b
/.

Figure 9.2 illustrates the insensitive microaggregation obtained by using MDAV with the
total order defined above. e original data set X and the modified data set X 0 are the same of
Figure 9.1. We also use k D 5 and the Euclidean distance for insensitive MDAV. Let us take as
the reference point for the above defined total order the point R at the lower left corner of the
grids. Note that now clusters C1,C2, and C3 in X differ in a single record from C 0

1,C 0
2, and C 0

3 in
X 0, respectively. By comparing Figures 9.1 and 9.2, we observe that the standard (non-insensitive)
MDAV results in a set of clusters with greater within-cluster homogeneity; however, in exchange
for the lost homogeneity, insensitive MDAV generates sets of clusters that are more stable when
one record of the data set changes.

9.3 GENERAL INSENSITIVEMICROAGGREGATION

It was seen in Section 9.1 that each clustering step within microaggregation can use a different
total order relation, as long as the sequence of order relations is kept constant. e advantage of
using multiple total order relations is that it allows the insensitive microaggregation algorithm
to better mimic a standard non-insensitive microaggregation algorithm, and thus increase the
within-cluster homogeneity.
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Figure 9.3: Cluster formation. Left, using a single reference point; right, taking each corner of the
domain as a reference point.

e sequence of total orders is determined by a sequence of reference points Ri . In the
selection of Ri we try to match the criteria used by non-insensitive microaggregation algorithms
to increase within-cluster homogeneity: start clustering at the boundaries, and generate a cluster
that is far apart from the previously generated cluster.

Let the domain of X i be Œai
b
; ai

t �. Define the set R of candidate reference points at those
points in the boundaries of Dom.X/, that is:

R D f.a1
v1

; : : : ; am
vm

/jvi 2 fb; tg for 1 � i � mg:

e first reference point R1 is arbitrarily selected fromR; for instance, R1 D .a1
b
; : : : ; am

b
/. Once

a point Ri has been selected, RiC1 is selected among the still unselected points in R so that
it maximizes the Hamming distance to Ri—if R1 D .a1

b
; : : : ; am

b
/, then R2 D .a1

t ; : : : ; am
t /. If

several unselected points in R maximize the Hamming distance to Ri , we select the one among
them with greatest distance to Ri�1, and so on.

Figure 9.3 shows the form of the clusters for a data set containing two numerical attributes.
e graphic on the left is for a single reference point—this is also the form of the clusters obtained
by insensitive MDAV, which uses a single total order relation. e graphic on the right uses four
reference points, one for each edge of the domain, which are selected in turns as described above.

9.4 DIFFERENTIAL PRIVACYWITHCATEGORICAL
ATTRIBUTES

Many data sets contain attributes with categorical values, such as Race, Country of birth, or
Job [67]. Unlike continuous-scale numerical attributes, categorical attributes take values from a
finite set of categories for which the arithmetical operations needed to microaggregate and add



9.4. DIFFERENTIAL PRIVACYWITHCATEGORICALATTRIBUTES 89

noise to the outputs do not make sense. In the sequel, we detail alternative mechanisms that are
suitable for categorical attributes in order to achieve differential privacy as detailed above.

Let X be a data set with m categorical attributes: X1; : : : ; Xm. e first challenge regards
the definition of Dom.X/. Unlike for numerical attributes, the universe of each categorical at-
tribute can only be defined by extension, listing all the possible values. is universe can be ex-
pressed either as a flat list or it can be structured in a hierarchic/taxonomic way.e latter scenario
is more desirable, since the taxonomy implicitly captures the semantics inherent to conceptual-
izations of categorical values (e.g., disease categories, job categories, sports categories, etc.). In
this manner, further operations can exploit this taxonomic knowledge to provide a semantically
coherent management of attribute values [57].

Formally, a taxonomy � can be defined as an upper semilattice �& on a set of concepts &

with a top element root& . We define the taxonomy �.X i / associated to an attribute X i as the
lattice on the minimum set of concepts that covers all values in Dom.X i /. Notice that �.X i / will
include all values in Dom.X i / (e.g., “skiing,” “sailing,” “swimming,” “soccer,” etc., if the attribute
refers to sport names) and, usually, some additional generalizations that are necessary to define
the taxonomic structure (e.g.,“winter sports,” “water sports,” “field sports,” and “sport” as the root
of the taxonomy).

If X1; : : : ; Xm are independent attributes, Dom.X/ can be defined as the ordered combina-
tion of values of eachDom.X i /, as modeled in their corresponding taxonomies �.X i /; : : : ; �.Xm/.
If X1; : : : ; Xm are not independent, value tuples in Dom.X/ may be restricted to a subset of valid
combinations.

Next, a suitable distance function d W Dom.X/ � Dom.X/! R to compare records should
be defined. To tackle this problem, we can exploit the taxonomy �.X i / associated with each X i in
X and the notion of semantic distance [84]. A semantic distance ı quantifies the amount of seman-
tic differences observed between two terms (i.e., categorical values) according to the knowledge
modeled in a taxonomy. Section 9.5 discusses the adequacy of several semantic measures in the
context of differential privacy. By composing semantic distances ı for individual attributes X i ,
each one computed from the corresponding taxonomy �.X i /, we can define the required distance
d W Dom.X/ � Dom.X/! R.

To construct a total order that yields insensitive and within-cluster homogeneous microag-
gregation as detailed in Section 9.3, we need to define the boundaries of Dom.X/, from which
records will be clustered. Unlike in the numerical case, this is not straightforward since most cat-
egorical attributes are not ordinal and, hence, a total order cannot be trivially defined even for
individual attributes. However, since the taxonomy �.X i / models the domain of X i , boundaries
of Dom.X i /, that is, Œai

b
; ai

t �, can be defined as the most distant and opposite values from the
“middle” of �.X i /. From a semantic perspective, this notion of centrality in a taxonomy can be
measured by the marginality model [23]. is model determines the central point of the taxon-
omy and how far each value is from that center, according to the semantic distance between value
pairs.
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emarginalitym.�; �/ of each value ai
j in X i with respect to its domain of values Dom.X i /

is computed as
m.Dom.X i /; ai

j / D
X

ai
l
2Dom.X i /�fai

j
g

ı.ai
l ; ai

j / (9.1)

where ı.�; �/ is the semantic distance between two values. e greater m.Dom.X i /; ai
j /, the more

marginal (i.e., the less central) is ai
j with regard to Dom.X i /.

Hence, for each X i , one boundary ai
b
of Dom.X i / can be defined as the most marginal

value of Dom.X i /:
ai

b D arg max
ai

j
2Dom.Ai /

m.Dom.X i /; ai
j /: (9.2)

e other boundary ai
t can be defined as the most distant value from ai

b
in Dom.X i /:

ai
t D arg max

ai
j

2Dom.Ai /

ı.ai
j ; ai

b/: (9.3)

By applying the above expressions to the set of attributes X1; : : : ; Xm in X , the set R of
candidate reference points needed to define a total order according to the semantic distance can
be constructed as described in Section 9.3.

If no taxonomic structure is available, other centrality measures based on data distribution
can be used (e.g., by selecting the modal value as the most central value [26]). However, such
measures omit data semantics and result in significantly less useful anonymized results [57].

Similarly to the numerical case, if several records are equally distant from the reference
points, the alphabetical criterion can be used to induce an order within those equidistant records.

At this point, records in X can be grouped using the insensitive microaggregation algo-
rithm, thereby yielding a set of clusters with a sensitivity of only one record per cluster. e
elements in each cluster must be replaced by the cluster centroid (i.e., the arithmetical mean in
the numerical case) in order to obtain a k-anonymous data set. Since the mean of a sample of
categorical values cannot be computed in the standard arithmetical sense, we rely again on the
notion of marginality [23]: the mean of a sample of categorical values can be approximated by the
least marginal value in the taxonomy, which is taken as the centroid of the set.

Formally, given a sample S.X i / of a nominal attribute X i in a certain cluster, the
marginality-based centroid for that cluster is defined in [23] as:

Centroid.S.X i // D arg min
ai

j
2�.S.Ai //

m.S.X i /; ai
j / (9.4)

where �.S.X i // is theminimum taxonomy extracted from �.X i / that includes all values in S.X i /.
Notice that by considering as centroid candidates all concepts in �.S.X i //, which include all
values in S.X i / and also their taxonomic generalizations, we improve the numerical accuracy of
the centroid discretization inherent to categorical attributes [57].
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enumerical value associated with each centroid candidate ai
j corresponds to its marginal-

ity value m.S.X i /; ai
j /, which depends on the sample of values in the cluster. Given a cluster of

records with a set of independent attributes X1; : : : ; Xm, the cluster centroid can be obtained by
composing the individual centroids of each attribute.

As in the numerical case, cluster centroids depend on input data. To fulfill differential
privacy for categorical attributes, two aspects must be considered. On the one hand, the cen-
troid computation should evaluate as centroid candidates all the values in the taxonomy associ-
ated to the domain of each attribute (�.X i /), and not only the sample of values to be aggregated
(�.S.X i //), since the centroid should be insensitive to any value change of input data within the
attribute’s domain. On the other hand, to achieve insensitivity, uncertainty must be added to the
centroid computation. Since adding Laplacian noise to centroids makes no sense for categorical
values, an alternative way to obtain differentially private outputs consists in selecting centroids in
a probabilistic manner. e general idea is to select centroids with a degree of uncertainty that
is proportional to the suitability of each centroid and the desired degree of �-differential privacy.
To do so, the Exponential Mechanism [62] can be applied. As introduced in Section 8.4, given
a function with discrete outputs t , the mechanism chooses the output that is close to the opti-
mum according to the input data D and quality criterion q.D; t/, while preserving �-differential
privacy.

Based on the above arguments, �-differentially private centroids can be selected as indicated
in Algorithm 9.

Algorithm 9 Computation of �-differentially private centroids for clusters with categorical at-
tributes
let C be a cluster with at least k records

for each categorical attribute X i do
Take as quality criterion q.�; �/ for each centroid candidate ai

j in �.X i / the additive inverse of
its marginality toward the attribute values S.X i / contained in C , that is, �m.S.X i /; ai

j /;
Sample the centroid from a distribution that assigns

Pr.ai
j / / exp.

� � .�m.S.X i /; ai
j //

2�.m.X i //
/ (9.5)

end for

Notice that the inversion of the marginality function has no influence on the relative prob-
abilities of centroid candidates, since it is achieved through a bijective linear transformation.
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With the algorithm we have the following result, which is parallel to what we saw in the
numerical case: if the input data are k-anonymous, the higher k, the less the uncertainty that
needs to be added to reach �-differential privacy.

Proposition9.6 LetX be a data set with categorical attributes. LetX be a k-anonymous version
of X generated using an insensitive microaggregation algorithm M with minimum cluster size k.
�-differential privacy can be achieved by using Algorithm 9 to obtain cluster centroids in X with
an amount of uncertainty that decreases as k grows.

Proof. Without loss of generality, we can write the proof for a single attribute X i . e argument
can be composed for multi-attribute data sets.

Let �.m.X i // be the sensitivity of the marginality function for attribute X i . According
to the insensitive microaggregation described earlier in Section 9.1, modifying one record in the
data set will induce a change of at most one value in the set S.X i / of values of X i in a cluster.
Considering that marginality measures the sum of distances between a centroid candidate and all
the elements in S.X i /, in the worst case, in which all values in S.X i / correspond to the same
boundary of Dom.X i / (defined by either Equation (9.2) or Equation (9.3)), and one of these is
changed to the other boundary, the sensitivity �.m.X i // will correspond to the semantic distance
between both boundaries.

We have that: i) to compute the probabilities in Expression (9.5), the quality criterion
�m.S.X i /; ai

j / is combined with � and �.m.X i //, and the latter two magnitudes are constant
for Dom.X i /; ii) jS.X i /j � k; iii) m.S.X i /; ai

j / is a sum of, at least, k � 1 terms. Hence, as
the cluster size k grows, the marginalities m.S.X i /; ai

j / of values ai
j in the cluster S.X i / have

more degrees of freedom and hence tend to become more markedly diverse. Hence, as k grows,
the probabilities computed in Expression (9.5) tend to become more markedly diverse, and the
largest probability (the one of the optimum centroid candidate) can be expected to dominate
more clearly; note that probabilities computed with Expression (9.5) decrease exponentially as
marginality grows. erefore, optimum centroids are more likely to be selected as k increases.
In other words, the amount of uncertainty added to the output to fulfill differential privacy for
categorical attributes decreases as the k-anonymity level of the input data increases. �

9.5 A SEMANTICDISTANCEFORDIFFERENTIALPRIVACY
As described above, the selection of differentially private outputs for categorical attributes is based
on the marginality value of centroid candidates that, in turn, is a function of the semantic distance
between centroids and clustered values. Moreover, the total order used to create clusters also relies
on the assessment of semantic distances between attribute values. Hence, the particular measure
used to compute semantic distances directly influences the quality of anonymized outputs.

A semantic distance ı W o � o! R is a functionmapping a pair of concepts to a real number
that quantifies the difference between the concept meanings. A well-suited ı to achieve semantic-
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preserving differentially private outputs should have the following features. First, it should capture
and quantify the semantics of the categorical values precisely, so that they can be well differenti-
ated, both when defining the total order and also when selecting cluster centroids [57]. Second,
from the perspective of differential privacy, ı should have a low numerical sensitivity to outlying
values, that is, those that are the most distant to the rest of data. In this manner, the sensitivity
of the quality criterion, which is the semantic distance of the two most outlying values of the do-
main, will also be low.is will produce less noisy and, hence, more accurate differentially private
outputs.

e accuracy of a semantic measure depends on the kinds of techniques and knowledge
bases used to perform the semantic assessments [84]. Among those relying on taxonomies,
feature-based measures and measures based on intrinsic information-theoretic models usually
achieve the highest accuracy with regard to human judgments of semantic distance [84]. e
former measures quantify the distance between concept pairs according to their number of com-
mon and non-common taxonomic ancestors. e latter measures evaluate the similarity between
concept pairs according to their mutual information, which is approximated as the number of
taxonomic specializations of their most specific common ancestor. Both approaches exploit more
taxonomic knowledge and, hence, tend to produce more accurate results, than well-known edge-
counting measures, which quantify the distance between concepts by counting the number of
taxonomic edges separating them.

On the other hand, the sensitivity to outlying values depends on the way in which seman-
tic evidence is quantified. Many classical methods [73, 106] propose distance functions that are
linearly proportional to the amount of semantic evidence observed in the taxonomy (e.g., num-
ber of taxonomic links). As a result, distances associated with outlying concepts are significantly
larger than those between other more “central” values. is leads to a centroid quality criterion
with a relatively high sensitivity, which negatively affects the accuracy of the Exponential Mech-
anism [62]. More recent methods [18, 72, 84] choose to evaluate distances in a non-linear way.
Non-linear functions provide more flexibility since they can implicitly weight the contribution of
more specific or more detailed concepts. As a result, concept pairs become better differentiated
and semantic assessments tend to be more accurate [84]. We can distinguish between measures
that exponentially promote semantic differences [18, 53] and those that aggregate semantic sim-
ilarities [72, 81, 82] and differences [84] in a logarithmic way. Among these, the latter one is
best suited for the differential privacy scenario, since the logarithmic assessment of the semantic
differences helps reduce the relative numerical distances associated with outlying concepts and,
hence, to minimize the sensitivity of the quality function used in the Exponential Mechanism.

Formally, this measure computes the distance ı W X i �X i ! R between two categorical
values ai

1 and ai
2 of attribute X i , whose domain is modeled in the taxonomy �.X i /, as a logarith-

mic function of their number of non-common taxonomic ancestors divided (for normalization)
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by their total number of ancestors [84]:

ı.ai
1; ai

2/ D log2

 
1C
j�.ai

1/ [ �.ai
2/j � j�.ai

1/ \ �.ai
2/j

j�.ai
1/ [ �.ai

2/j

!
(9.6)

where �.ai
j / is the set of taxonomic ancestors of ai

j in �.X i /, including itself.
As demonstrated in [84] and [10], Expression (9.6) satisfies non-negativity, reflexivity,

symmetry, and subadditivity, thereby being a distance measure in the mathematical sense.
Moreover, thanks to the normalizing denominator, the above distance is insensitive to the

size and granularity of the background taxonomy, and it yields positive normalized values in the
Œ0; 1� range. Since the distance d W Dom.X/ � Dom.X/! R defined in Section 9.4 is the com-
position of semantic distances for individual attributes and their domains may be modeled in dif-
ferent taxonomies, a normalized output is desirable to coherently integrate distances computed
from different sources.

9.6 INTEGRATINGHETEROGENEOUSATTRIBUTE
TYPES

e above-described semantic measure provides a numerical assessment of the distance between
categorical attributes. As a result, given a data set X with attributes of heterogeneous data types
(i.e., numerical and categorical), the record distance d W Dom.X/ � Dom.X/! R required for
microaggregation can be defined by composing numerically assessed distances for individual at-
tributes, as follows:

d.x1; x2/ D

s
.dist.a1

1; a1
2//2

.dist.a1
b
; a1

t //2
C � � � C

.dist.am
1 ; am

2 //2

.dist.am
b

; am
t //2

(9.7)

where dist.ai
1; ai

2/ is the distance (either numerical or semantic) between the values for the i-th
attribute X i in x1 and x2, and dist.ai

b
; ai

t / is the distance between the boundaries of Dom.X i /,
which is used to eliminate the influence of the attribute scale.

It can be noticed that Expression (9.7) is similar to the normalized Euclidean distance, but
replacing attribute variances, which depend on input data, by distances between domain bound-
aries, which are insensitive to changes of input values. In this manner, the record distance function
effectively defines a total order that fulfills differential privacy.

9.7 SUMMARY
is chapter has presented a method to generate differentially private data sets based on multi-
variate microaggregation. Following the perturbative masking approach, the protected data set
can be generated by collating differentially private responses to the queries that ask for the con-
tents of each of the records. However, since differential privacy aims at hiding the effect of any
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individual on the query responses, the expected accuracy of such responses is very low. Reducing
the sensitivity of queries is a way to reduce the amount of noise that needs to be added to satisfy
differential privacy. e method presented in this chapter operates this sensitivity reduction by
using a prior multivariate microaggregation step. As a result of this step, the original records are
clustered and the records in each cluster are replaced by the cluster centroid. Since each centroid
depends on k records, queries on the microaggregated data set are far less sensitive to the pres-
ence or absence of any original record than queries on the original data set. Hence, much less
noise needs to be added to the microaggregated data set than to the original data set to attain
differential privacy; in fact, unless k is very large, the noise reduction more than compensates the
distortion introduced by microaggregation.

A technical issue is that a special type of multivariate microaggregation is needed to oper-
ate the above sensitivity reduction, which we call insensitive microaggregation. Beyond defining
the concept of insensitive microaggregation, we give algorithms to perform it on numerical and
categorical attributes.
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C H A P T E R 10

Differential Privacy by
Individual Ranking
Microaggregation

is chapter is a follow-up of the previous one on creating differentially private data sets via per-
turbative masking. e previous chapter used multivariate microaggregation to reduce the sen-
sitivity (and, thus, the required amount of noise) in the masked records. Using multivariate mi-
croaggregation to reduce the sensitivity was complex because the change of a single record in a
data set could lead to multiple changes in the microaggregation clusters. We solved this issue by
restricting to a class of microaggregation techniques that we called insensitive microaggregation.
Moreover, the fact that a microaggregation parameter k is required that depends on the number
of records n of the input data set may be problematic for large data sets. In other words, for large
data sets, the required k may be so large that the utility loss incurred in the prior microaggrega-
tion step cancels the utility gain due to subsequent noise reduction. To circumvent this problem,
the method described in this chapter uses univariate microaggregation instead of its multivariate
counterpart. As a result, utility gains with respect to standard differential privacy are obtained
regardless of the number of records of the input data set [85, 86]. In fact, using univariate mi-
croaggregation has two main advantages over multivariate microaggregation: it is simpler and it
yields a sensitivity that does not depend on the size of the data set anymore (only on the number
of attributes to be protected). is behavior is especially desirable in at least the following cases:
i) data sets with a large number of records; ii) data sets with a small number of attributes; iii) data
sets in which only the confidential attributes, which usually represent a small fraction of the total
attributes, need to be protected.

10.1 LIMITATIONSOFMULTIVARIATE
MICROAGGREGATION

When using insensitive multivariate microaggregation, the sensitivity of the set of n=k centroids
thus obtained is n=k ��.X/=k because, in the worst case.

• Changing a single record in the input data set can cause all n=k clusters to change by one
record
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• e record changed within each cluster can alter the value of the cluster centroid by up to
�.X/=k, where �.X/ is the maximum distance between elements in the domain of the
input data (we are assuming that centroids are computed as the arithmetic average of record
values in the cluster).

e above worst-case scenario overestimates the actual sensitivity of the output and, thus, the
noise to be added to the centroids to achieve �-differential privacy. Indeed, it is highly unlikely
that modifying one input record by up to �.X/ would change by �.X/ one record in each cluster.
Let us consider an extreme scenario, in which all records in the input data set take the maximum
possible value tuple in the domain of X . Recall that the insensitive microaggregation used sorts
and groups records according to a total order defined over the domain of X .en, assume that the
record located in the last position of the sorted list changes to take theminimum value tuple of the
domain of X , so that its distance to any of the other records in the data set is �.X/. According to
the ordering criterion, such a change would cause the modified record to be “inserted” in the first
position of the sorted list. Consequently, all other records would be moved to the next position,
which would change all clusters by one record. However, from the perspective of the centroid
computation (i.e., the average of the record in the group), only the first cluster centroid, where
the modified record is located, would change and its variation would be exactly �.X/=k.

In other intermediate scenarios, the effect ofmodifying one record would be split among the
centroids of the clusters affected by the modification. Intuitively, the aggregation of the centroid
variations would seem to be upper-bounded by �.X/=k, which corresponds to the extreme case
detailed above. However, this is only true if a total order for the domain of X exists for which
the triangular inequality is satisfied, that is, when d.r1; r2/C d.r2; r3/ � d.r1; r3/ holds for any
records r1, r2, and r3 in X . Unfortunately, this is generally not the case for multivariate data
because a natural total order does not always exist. Artificial total orders defined for multivariate
data do not fulfill the triangular inequality and, as discussed above, the sensitivity of individual
centroids should be multiplied by the number of released centroids (n=k ��.X/=k) to satisfy
differential privacy.

e lack of a total order does not occur in univariate numerical data sets, that is, those with
just one attribute. With a single numerical attribute, a natural total order (the usual numerical
order) can be easily defined with respect to the minimum or maximum value of the domain of
values of the attribute so that the triangular inequality is fulfilled. In these conditions, it is shown
in [21] that clusters in the optimal microaggregation partition contain consecutive values. e
next lemma shows that the sensitivity of the set of centroids is indeed �.X/=k.

Lemma 10.1 Let x1; � � � ; xn be a totally ordered set of values that has been microaggregated
into bn=kc clusters of k consecutive values each, except perhaps one cluster that contains up to
2k � 1 consecutive values. Let the centroids of these clusters be Nx1; � � � ; Nxbn=kc, respectively. Now
if, for any single i , xi is replaced by x0

i such that jx0
i � xi j � � and new clusters and centroids
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Nx0

1; � � � ; Nx0
bn=kc are computed, it holds that

bn=kcX
j D1

j Nx0
j � Nxj j � �=k:

Proof. Assume without loss of generality that x0
i > xi (the proof for x0

i < xi is symmetric). As-
sume, for the sake of simplicity, that n is a multiple of k (we will later relax this assumption).
Hence, exactly n=k clusters are obtained, with cluster j containing consecutive values from
x.j �1/kC1 to xjk. Let ji be the cluster to which xi belongs. We can distinguish two cases, namely
x0

i � xji kC1 and x0
i > xji kC1.

Case 1. When x0
i � xji kC1, x0

i stays in ji . us, the centroids of all clusters other than ji

stay unchanged and the centroid of cluster ji increases by �=k, because x0
i D xi C�. So the

lemma follows in this case.
Case 2. When x0

i > xji kC1, two or more clusters change as a result of replacing xi by x0
i :

cluster ji loses xi and another cluster j 0
i (for j 0

i > ji ) acquires x0
i . To maintain its cardinality

k, after losing xi , cluster ji acquires xji kC1. In turn, cluster ji C 1 loses xji kC1 and acquires
x.ji C1/kC1, and so on, until cluster j 0

i , which transfers its smallest value x.j 0
i
�1/kC1 to cluster

j 0
i � 1 and acquires x0

i . From cluster j 0
i C 1 upward, nothing changes. Hence the overall impact

on centroids is
n=kX
j D1

j Nx0
j � Nxj j D

j 0
iX

j Dji

j Nx0
j � Nxj j

D
xji kC1 � xi

k
C

x.ji C1/kC1 � xji kC1

k
C � � � C

x0
i � x.j 0

i
�1/kC1

k

D
x0

i � xi

k
D

�

k
: (10.1)

Hence, the lemma follows also in this case.
Now consider the general situation in which n is not a multiple of k. In this situation there

are bn=kc clusters and one of them contains between k C 1 and 2k � 1 values. If we are in Case 1
above and this larger cluster is cluster ji , the centroid of ji changes by less than�=k, so the lemma
also holds; of course if the larger cluster is one of the other clusters, it is unaffected and the lemma
also holds. If we are in Case 2 above and the larger cluster is one the clusters that change, one of
the fractions in the third term of Expression (10.1) above has a denominator greater than k and
hence the overall sum is less than �=k, so the lemma also holds; if the larger cluster is one of the
unaffected ones, the lemma also holds. �
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10.2 SENSITIVITYREDUCTIONVIA INDIVIDUALRANKING
From the previous section, it turns out that, for univariate data sets, the amount of noise needed to
fulfill differential privacy after the microaggregation step is significantly lower than with the mul-
tivariate insensitive microaggregation method in Chapter 9 (i.e., �.X/=k vs. n=k ��.X/=k).
Moreover, this noise is exactly 1=k-th of the noise required by the standard differential privacy
approach, in which the sensitivity is �.X/ because any output record may change by �.X/ fol-
lowing a modification of any record in the input.

To benefit from such a noise reduction in the case of multivariate data sets, we rely on the
sequential composition property of differential privacy (see Section 8.1). As discussed in Sec-
tion 9.1, in the context of differentially private data publishing, we can think of a data release
as the collected answers to successive queries for each record in the data set. Let Ir.X/ be the
query that returns the value of record r (from a total of n records) in the data set X . In turn,
we can think of Ir.X/ as the collected answers to successive queries for each of the attributes of
record r . Let Ira.X/ be the query function that returns the value of attribute a (from a total of
m attributes). We have Ir.X/ D .Ir1.X/; : : : ; Irm.X//. e differentially private data set that we
seek can be generated by giving a differentially private answer to the set of queries Ira.X/ for all
r D 1; : : : ; n and all a D 1; : : : ; m. Differential privacy being designed to protect the privacy of
individuals, such queries are very sensitive and require a large amount of noise.

To reduce sensitivity and hence the amount of noise needed to attain differential privacy,
we rely on individual ranking microaggregation; as discussed in Section 3.2, individual ranking is
more utility-preserving than multivariate microaggregation. Rather than querying for Ira.X/, the
data set is generated by querying for individual ranking microaggregation centroids. Let �X .r; a/

be the group of records of data set X in the individual ranking microaggregation of attribute a

that corresponds to r , and let C�X .r;a/ be the associated centroid. We replace Ira.X/ by C�X .r;a/.
Now, we have to minimize the amount of noise required to answer these queries in a dif-

ferentially private manner. We work with each attribute independently and then combine the
queries corresponding to different attributes by applying sequential composition. If we get an �-
differentially private response to .C�X .1;a/; : : : ; C�X .n;a// for each a D 1; : : : ; m, then by joining
them we have m�-differential privacy.

For attribute a, we have to answer the query .C�X .1;a/; : : : ; C�X .n;a// in an �-differentially
private manner. If we compute the L1-sensitivity of this query, sa, we can attain �-differential pri-
vacy by adding a Laplace distributed noise with scale parameter sa=� to each component C�X .i;a/.
We have already seen that for individual ranking microaggregation the L1-sensitivity of the list
of centroids is �a=k. However, in our query each centroid appears k (or more times); hence, the
sensitivity is multiplied by k and becomes �a (or greater), which is not satisfactory. Our goal is
to show that we can attain �-differential privacy by adding a Laplace noise with scale �a=.k�/

rather than �a=� (as an L1-sensitivity of �a would require). To that end, instead of taking an
independent draw of the noise distribution for each of the components, we use the same draw
for all the components that refer to the same centroid. at is, we use the same random variable
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L�X .r;a/ to determine the amount of noise that is added to all the components sharing the same
value C�X .r;a/; similarly, in data set X 0 we use L�X0 .r;a/ as noise for all components sharing the
same value C�X0 .r;a/. For �-differential privacy, it must hold that

Pr..C�X .1;a/ C L�X .1;a/; : : : ; C�X .n;a/ C L�X .n;a// D .x1; : : : ; xn//

Pr..C�X0 .1;a/ C L�X0 .1;a/; : : : ; C�X0 .n;a/ C L�X0 .n;a// D .x1; : : : ; xn//
� exp.�/:

If any of x1; : : : ; xn is not a centroid value plus the noise corresponding to that centroid
value (note that equal centroid values are added equal noise values, as said above), the probabilities
in both the numerator and the denominator of the above expression are zero, and differential
privacy is satisfied. Otherwise, we have that x1; : : : ; xn are only repetitions of n=k different values,
that is, the values of the n=k centroids plus the noise corresponding to each centroid value. us,
we can simplify the expression by removing all but one of each of those repetitions. Let Ci;a.X/

and Ci;a.X 0/ for i D 1; : : : ; n=k be the centroid values for attribute a associated to X and X 0,
respectively, andLi;a andL0

i;a be Laplace noises with scale�a=.k�/ associated with those centroid
values, respectively. After rewriting the above inequality in these terms and taking into account
that the sensitivity of the list of centroids is �a=k, it is evident that �-differential privacy is
satisfied.

Pr..C1;a.X/C L1;a; : : : ; Cn=k;a.X/C Ln=k;a/ D .x0
1; : : : ; x0

n=k
//

Pr..C1;a.X 0/C L0
1;a; : : : ; Cn=k;a.X 0/C L0

n=k;a
/ D .x0

1; : : : ; x0
n=k

//
� exp.�/:

Hence, we propose Algorithm 10 to obtain a differentially private version XD of a numer-
ical original data set X with attributes X1; : : : ; Xm.

Algorithm10Generation of a �-differentially private data set via individual-ranking microaggre-
gation for numerical attributes

1. Use individual-ranking microaggregation independently on each attribute X i , for i D 1 to
m.

2. Within each cluster, replace all attribute values by the cluster centroid value, so that each
microaggregated cluster consists of k repeated centroid values. Let the resulting microag-
gregated data set be NX .

3. Add Laplace noise independently to each attribute NX i of NX , where the scale parameter for
attribute NX i is

�. NX i /=� D �.X i /=.k � �/:

e same noise perturbation is used on all repeated centroid values within each cluster.

Now we can state the following.
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Lemma 10.2 e data set output by Algorithm 10 is m�-differentially private.

Proof. e lemma follows from the previous discussion in this section. �

Note. In Step 3 of Algorithm 10, it is critically important to add exactly the same noise
perturbation to all repeated values within a microaggregated cluster. If we used different random
perturbations for each repeated value, the resulting noise-added cluster would be equivalent to
the answers to k independent queries. is would multiply by k the sensitivity of the centroid,
which would cancel the sensitivity reduction brought by microaggregation in Step 1.

10.3 CHOOSINGTHEMICROGGREGATIONPARAMETER k

In order to obtain an �-differentially private data set, by parallel composition it suffices to make
each record �-differentially private. In turn, to make a record �-differentially private, we have two
possibilities.

1. Plain Laplace noise addition without microaggregation. Given that each record has m at-
tributes, by sequential composition we need .�=m/-differentially private attribute values
to obtain an �-differentially private record. Hence, Laplace noise addition with scale pa-
rameter �.X i /=.�=m/ D m�.X i /=� needs to be added to each attribute X i .

2. Laplace noise addition with individual ranking microaggregation. When performing
individual-ranking microaggregation and replacing original values by cluster centroids, we
preserve the structure of records. By sequential composition, to make a record of NX �-
differentially private, we need to make attributes in NX .�=m/-differentially private. Hence,
Laplace noise addition with scale parameter �. NX i /=.�=m/ D m�. NX i /=� needs to be added
to each attribute NX i . However, dealing with NX i rather than X i is better, because NX i is less
sensitive. Indeed, �. NX i / D �.X i /=k, so the scale parameter is m�. NX i /=.k�/.

According to the above discussion, our approach adds less noise than plain Laplace noise addition
for any k > 1. Admittedly, its prior individual ranking microaggregation causes some additional
information loss. However, this information loss grows very slowly with the cluster size k and also
with the number of attributes m, whereas the Laplace noise being added decreases very quickly
with k.

10.4 SUMMARY
Like the previous chapter, this chapter has presented a method to generate a differentially pri-
vate data set based on microaggregation. Rather than multivariate microaggregation, univariate
microaggregation has been used. Univariate microaggregation enables further reduction of the
noise scale parameter in most scenarios, which is of utmost importance for data analysis. e
method described in this chapter is also easier to implement, because the individual ranking al-
gorithm only relies on the natural order of individual attributes. Moreover, for n records and
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m attributes, its computational cost is O.n �m/, whereas insensitive multivariate microaggrega-
tion takes O.n � n/. Since usually n� m, the current method is more scalable as the number of
records in a data set grows. Finally, prior individual-ranking microaggregation incurs less infor-
mation loss than prior multivariate microaggregation. Even though the discussion was focused on
numerical attributes, by using the alternative mechanisms introduced in Section 9.4, the method
detailed here can also be applied to categorical data.
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C H A P T E R 11

Conclusions and Research
Directions

In this book, we have offered a comprehensive overview of privacy threats and protection mecha-
nisms for microdata releases, which focus on identity and/or attribute disclosure.ese are tightly
related to the two views of privacy that have been presented in Chapter 2: anonymity (it should
not be possible to re-identify any individual in the published data) and confidentiality or secrecy
(access to the released data should not reveal confidential information related to any specific in-
dividual).

11.1 SUMMARYANDCONCLUSIONS
Wehave seen that statistical disclosure control for microdata is attained through datamodification
(by either masking the original data set or replacing it with a synthetic data set). e protected
(modified) version of the original data set is then released while the original data set is kept
private. e modifications operated on the data during the SDC process damage their utility.
e goal in SDC should be to modify data in such a way that sufficient protection is provided at
minimum utility loss. However, measuring utility is a complex topic. e main difficulty is that
utility depends not only on the modifications performed on the data but also on the intended
data uses. Since potential data uses are very diverse and it may even be hard to identify them
all at the moment of the data release, microdata protection can seldom be performed in a data
use-specific manner. us, it is usually more appropriate to refer to information loss rather than
to utility. Measures of information loss provide generic ways for the data protector to assess how
much harm is being inflicted to the data by a particular masking technique.

ere is a large body of methods for disclosure control of microdata (see Chapter 3). ese
methods can be applied to obtain ex post or ex ante privacy. e ex post approach is the usual
one in the statistical community, and it prioritizes publishing analytically valid data; disclosure
risk is measured after the data have been protected and, in case it is considered too high, more
stringent privacy parameters or even a different SDC method are used to bring the risk down to
an acceptable level.e ex ante approach is mainly advocated in the computer science community,
and it focuses on guaranteeing from the outset that the disclosure risk is below a specified level;
this is done via a privacy model and no utility considerations are taken into account.

Privacy models state the conditions to be satisfied by the protected data for disclosure risk
to be under control. However, they do not specify the SDC method to be employed to attain



106 11. CONCLUSIONSANDRESEARCHDIRECTIONS

these conditions. Among the privacy models we have reviewed, k-anonymity and its derivatives
can be classified as syntactic privacy models: they determine the form that the protected data
set must have to limit disclosure risk. is form is usually determined by making assumptions
about the information available to intruders and the approach that the latter will follow in an
attack. For instance, in k-anonymity is it assumed that intruders proceed by linking the quasi-
identifier attributes to an external non-anonymous data set. us, by requiring each combination
of quasi-identifier values to be shared by at least k records in the protected data set, accurate
re-identification is prevented. Unlike syntactic privacy models, differential privacy specifies con-
ditions on the data generation process rather than on the generated data.

k-anonymity-like models and differential privacy take completely different approaches to
disclosure limitation. However, we have shown in Chapter 8 that, if the assumptions about the
intruder made in t-closeness are satisfied, the protection offered by t-closeness and the protection
offered by differential privacy are equivalent.

We have also demonstrated that, beyond being a family of SDC methods, microaggrega-
tion is a useful primitive to find bridges between privacy models. While attaining k-anonymity
through microaggregation is rather intuitive, we have also described several more elaborate ap-
proaches to attain t-closeness based on microaggregation (see Chapter 7). When generating dif-
ferentially private data sets via perturbative masking, microaggregation has also been used to re-
duce data sensitivity and, thus, the amount of noise addition required to fulfill differential privacy.
An approach based on a special type of multivariate k-anonymousmicroaggregation, called insen-
sitive microaggregation, has been described in Chapter 9, whereas a method based on univariate
microaggregation that offers better utility for large data sets has been described in Chapter 10.

11.2 RESEARCHDIRECTIONS

In addition to the conventional data release scenarios considered in this book, the current research
agenda in data privacy includes more challenging settings that require further research.

On the one hand, the (legitimate) ambition to leverage big data by releasing them poses
several problems [13, 55, 93]. In the conventional data protection scenario, the data set is of
moderate size, it comes from a single source and it is static (it is a snapshot). Hence, it can
be protected independently from other data sets by the data collector. In contrast, big data are
often created by gathering and merging heterogeneous data from different sources, which may
already have been anonymized by the sources. To further complicate matters, these sources may
be dynamic, that is, they may provide continuous data streams (e.g., sensor readings that keep
flowing in over time). us, the data protector faces the following challenges.

• Scalability. e sheer volume of big data sets can render many of the available protection
methods impractical. e computational cost of the algorithms employed for anonymization
should be carefully pondered.



11.2. RESEARCHDIRECTIONS 107

• Linkability. If merging sensitive data from several sources, the incoming data may already
have been anonymized at the source (in fact they probably should). Hence, the ability to
link anonymized records from several sources that correspond to the same individual is a
crucial issue. At the same time, the requirement to preserve some amount of linkability may
restrict the range of eligible anonymization methods.

• Composability. A privacy model is composable if the privacy guarantees it offers are totally
or partially preserved after repeated independent applications of the model. Clearly, when
aggregating anonymized data from several sources, composability is fundamental if the ag-
gregated data have to offer some privacy guarantee.

• Dynamicity. Data may be continuous, transient, and even unbounded. It may be hard to
enforce the usual privacy models in this situation. Furthermore, there is a need to minimize
the delay between the incoming data and the corresponding anonymized output [11] and,
thus, protection algorithms should be efficient enough to be run in real time or quasi-real
time.

Also partly related to the explosion of big data, there is an increasing social and political
pressure to empower the citizens regarding their own data. Specifically, the forthcomingEuropean
Union’s General Data Protection Regulation [5] makes significant steps in this direction. As a
consequence, transparency, intervenability, and even self-anonymization become very relevant
technical requirements [13]. Privacy-preserving technologies are needed that empower the data
subjects to understand, check, control, and even perform themselves the protection of their data.
In this respect, local anonymization [89] (whereby subjects locally anonymize their data so that
they can be later merged with other subjects’ data to form a data set that still satisfies a certain
privacy model) or collaborative anonymization [94] (whereby subjects collaborate to anonymize
their respective data so that they get as much privacy as with local anonymization and as little
information loss as with centralized anonymization) are promising approaches.

Finally, as pointed out in [15], privacy by design (for which anonymization and statistical
disclosure control are tools) cannot protect all individual rights related to data. Very connected to
the right to privacy is the right to non-discrimination.When automated decisions are made based
on inference rules learned by data mining algorithms from training data biased w.r.t. discrimina-
tory (sensitive) attributes like gender, ethnicity, religion, etc., discriminatory decisions may ensue.
As a result, individuals may be unfairly deprived of rights and benefits they are entitled to. Even
if the training data contain no sensitive attributes, these may be inferred by the data mining algo-
rithms based on other attributes (e.g., in some cases the ethnicity can be guessed from the place
of residence, or the gender from the job, etc.) which may still allow indirect discrimination. De-
tection of discrimination in data mining was first introduced in [71]. Sanitization methods for
training data to prevent direct or indirect discrimination were proposed in [37, 39]. In [38, 40] it
was shown that synergies can be found between sanitization for anti-discrimination and saniti-
zation for privacy preservation: if adequately done, sanitizing for one purpose may go a long way



108 11. CONCLUSIONSANDRESEARCHDIRECTIONS

toward sanitizing for the other purpose, which allows attaining both goals with less information
loss than if pursuing them independently.

e need for anti-discrimination becomes even more pressing in the time of big data ana-
lytics. As warned in [13], analytics applied to combined data sets aim at building specific profiles
for individuals that can be used in the context of automated decision making systems, that is,
to include or exclude individuals from specific offers, services, or products. Such profiling can
in certain cases lead to isolation and/or discrimination, including price differentiation, credit de-
nial, exclusion from jobs or benefits, etc., without providing the individuals with the possibility to
contest these decisions. Extending the above-mentioned synergies between anti-discrimination
and privacy preservation to big data coming from several sources is a worthy research endeavor
requiring further work.
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